• Title/Summary/Keyword: Equal angle

Search Result 251, Processing Time 0.032 seconds

Practical second-order analysis and design of single angle trusses by an equivalent imperfection approach

  • Cho, S.H.;Chan, S.L.
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.443-458
    • /
    • 2005
  • Steel angles are widely used in roof trusses as web and chord members and in lattice towers. Very often angle members are connected eccentrically. As a result, not only an angle member is under an axial force, but it is also subject to a pair of end eccentric moments. Moreover, the connection at each end provides some fixity so neither pinned nor the fixed end represents the reality. Many national design codes allow for the effects due to eccentricities by modifying the slenderness ratio and reducing the compressive strength of the member. However, in practice, it is difficult to determine accurately the effective length. The concept behind this method is inconsistent with strength design of members of other cross-sectional types such as I or box sections of which the buckling strength is controlled by the Perry constant or the initial imperfection parameters. This paper proposes a method for design of angle frames and trusses by the second-order analysis. The equivalent initial imperfection-to-length ratios for equal and unequal angles to compensate the negligence of initial curvatures, load eccentricities and residual stresses are determined in this paper. From the obtained results, the values of imperfection-to-length ratios are suggested for design and analysis of angle steel trusses allowing for member buckling strength based on the Perry-Robertson formula.

Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders (분말 ECAP 공정에 미치는 금형 모서리각 효과에 대한 유한요소해석)

  • Yoon, Seung-Chae;Bok, Cheon-Hee;Quang, Pham;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.26-31
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.

Analysis of Deformation Behavior due to Die Angles during Equal Channel Angular Pressing (ECAP) with Pure-Zirconium (Pure-Zirconium의 ECAP 공정에서의 금형의 교차각과 만곡각에 따른 재료의 변형거동해석)

  • Kwon, G.H.;Chae, S.W.;Kwun, S.I.;Kim, M.H.;Hwang, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.747-753
    • /
    • 2000
  • There has been a number of investigations in recent years reporting the results obtained on the structure and properties of metals deformed to severe plastic deformation (SPD). Being deformed to SPD, ultra-fine grains (UFG) are usually formed, and UFG structure exhibits fundamental differences in original physical properties. One method often used to obtain SPD is equal channel angular pressing (ECAP). In order for this technique to be exploited, it is important to understand the deformation behavior during the ECAP processing and relationship to the configuration of die. The finite element method (FEM) has been used to investigate this issue. It has been found that the plastic deformation is sensitive to the channel angle and material properties and is not uniform across the width of the specimen and the pressing load is relative to deformation during the ECAP processing.

  • PDF

APPROXIMATION OF CONVEX POLYGONS

  • Lee, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.245-250
    • /
    • 2002
  • Consider the Convex Polygon Pm={Al , A2, ‥‥, Am} With Vertex points A$\_$i/ = (a$\_$i/, b$\_$i/),i : 1,‥‥, m, interior P$\^$0/$\_$m/, and length of perimeter denoted by L(P$\_$m/). Let R$\_$n/ = {B$_1$,B$_2$,‥‥,B$\_$n/), where B$\_$i/=(x$\_$i/,y$\_$I/), i =1,‥‥, n, denote a regular polygon with n sides of equal length and equal interior angle. Kaiser[4] used the regular polygon R$\_$n/ to approximate P$\_$m/, and the problem examined in his work is to position R$\_$n/ with respect to P$\_$m/ to minimize the area of the symmetric difference between the two figures. In this paper we give the quality of a approximating regular polygon R$\_$n/ to approximate P$\_$m/.

A Study on a Generalization of the Law of Cosine Using Vector (유추를 통한 코사인정리의 일반화에 대한 연구)

  • Han, In-Ki
    • Communications of Mathematical Education
    • /
    • v.21 no.1 s.29
    • /
    • pp.51-64
    • /
    • 2007
  • In this study we generalize the law of cosine(in any triangle the square of one side is equal to the sum of the squares of the other sides minus twice their product times the cosine of their included angle), We find the following generalized law of cosine: in any polygon the square of one side is equal to the sum of the squares of the other sides minus twice their products times the cosines of their included angles, and prove it using vector.

  • PDF

3-phase IHCML inverter using common-arm (공통암 3상 IHMCL 인버터)

  • Song, S.G.;Park, S.J.;Moon, C.J.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.512-514
    • /
    • 2007
  • The number of transformers and the size of transformers in inverter using 3-phase transformer could be reduced compare with a multi-level inverter using single phase transformer. but still the 3-phase transformer inverter needs many switches. In this study, we proposed the isolated multi-level inverter using 3-phase transformers and common arm. Also, the equal-area method is used to calculate conduction angle with switching frequency equal to output fundamental frequency and it can reduce harmonics component of output voltage and switching loss. Finally, We tested multi-level inverter to clarify electric circuit and reasonableness through Matlab simulation and experiment by using prototype inverter.

  • PDF

Machinability of ceramic and WC-Co green compacts (세라믹 및 초경합금 성형체의 피절삭성)

  • Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

Estimation of Radial Immersion Ratio and Instantaneous Ratio between Cutting Force Components using Cutting Force in Face Milling (정면밀링에서 절삭력을 이용한 반경방향 절입비와 순간 절삭력 성분 사이의 비 추정)

  • 김명곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.239-244
    • /
    • 1999
  • Radial immersion ratio is an important factor to determine the threshold in face milling and should be estimated in process for automatic force regulation. In this paper, presented is a method of on-line estimation of radial immersion ratio using cutting force. When a tooth finishes sweeping, sudden drop of cutting forces occurs. These force drops are equal to the cutting forces that act on a single tooth at the swept angle of cut and can be acquired from cutting force signals in feed and cross-feed directions. The ratio of cutting forces in feed and cross-feed directions acting on the single tooth at the swept angle of cut is a function of the swept angle of cut and the ratio of radial to tangential cutting force. In the research, it is found that the ratio of radial to tangential cutting force is not affected by cutting conditions and axial rake angle. Therefore, the ratio of radial to tangential cutting force determined by just one preliminary experiment can be used regardless of the cutting conditions. Using the measured cutting forces and predetermined ratio, the redial immersion ratio is estimated. various experiments show that the radial immersion ratio can be estimated by the proposed method very well.

  • PDF

On-line Estimation of Radial Immersion Ratio in Face Milling Using Cutting Force (정면 밀링에서 절삭력을 이용한 반경 방향 절입비의 실시간 추정)

  • Hwang, Ji-Hong;O, Yeong-Tak;Gwon, Won-Tae;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.178-185
    • /
    • 1999
  • In tool condition monitoring systems, parameters should be set to a certain threshold. In many cases, however, the threshold is dependent on cutting conditions, especially the radial immersion ratio. In this presented is a method of on-line estimation of the radial immersion ratio in face milling. When a tooth finishes sweeping, a sudden drop of cutting force occurs. The force drop is equal to the cutting force that acting on a tooth at the swept angle of cut and can be acquired from cutting force signals in feed and cross-feed directions. Average cutting force per tooth period can also be calculated from cutting force signals in two directions. The ratio to cutting forces in two directions acting on a tooth at a certain swept angle of cut and the ratio of average cutting forces in two directions per tooth period are functions of the swept angle of cut and the ratio of radial to tangential cutting forces. Using these parameters, the radial immersion ratio is estimated. Various experiments are performed to verify the proposed method. The results show that the radial immersion ratio can be estimated by this method regardless of other cutting conditions.

  • PDF

The Effect of Thoracic Joint Mobilization on the Changes of the Thoracic Kyphosis Angle and Static and Dynamic Balance

  • Jeong, Hae-Jin;Kim, Byeong-Jo
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.149-158
    • /
    • 2019
  • The objective of this study was to evaluate the effects of thoracic mobilization (TM) on the angle of thoracic kyphosis, and static and dynamic balances by application period. The subjects of this study were 18 adult males and females (${\geq}20years\; old$) who had the angle of thoracic kyphosis equal to or higher than $40^{\circ}$. A pre-test was conducted for all subjects and TM was carried out. Data were collected before the intervention, 3 weeks after the intervention, and 6 weeks after the intervention. It was measured three times per measurement and mean values were used for the analysis. The results of this study showed that the angle of thoracic kyphosis significantly (P<.05) decreased after applying TM. However, the migration area ($mm^2$) of the center of pressure (COP) in the static balance did not vary significantly. In the case of the dynamic balance, when eyes were open, the migration area ($mm^2$) of the COP significantly (P<.05) decreased after 3 weeks. When eyes were open, the migration area ($mm^2$) of the COP significantly (P<.05) decreased after 3 weeks and 6 weeks. Therefore, an intervention for improving the human body alignment and balance should be applied for a long-term, rather than a short-term, in order to be effective.