• Title/Summary/Keyword: Epoxy adhesive

Search Result 281, Processing Time 0.024 seconds

Preparation of Adhesion Promoter for Lead Frame Adhesion and Application to Epoxy Composite

  • Kim, Jung Soo;Kim, Eun-jin;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.48-54
    • /
    • 2022
  • A polymeric adhesion promoter was synthesized to improve the adhesive strength of the Ni lead frame/epoxy composite. Poly(itaconic acid-co-acrylamide) (IAcAAM) was prepared by copolymerizing itaconic acid and acrylamide. We compared the adhesive strength between the Ni lead frame and epoxy composite according to the molecular weight of IAcAAM. The molecular weight of IAcAAM was controlled using an initiator, which made it possible to use IAcAAM in the epoxy molding compound (EMC) manufacturing process by modulating the melting temperature. The adhesive strength of Ni lead frame/epoxy composite increased with the addition of IAcAAM to the epoxy composite. In addition, as the molecular weight of IAcAAM increased, the adhesive strength of the Ni lead frame/epoxy composite slightly increased. We confirmed that IAcAAM with an appropriate molecular weight can be used in the EMC manufacturing process and increase the adhesive strength of the Ni lead frame/epoxy composite.

Evaluation of Adhesion Property with Pot Life and Curing Humidity of GFRC and Epoxy Adhesive (유리섬유강화 복합재료와 에폭시 접착제의 가사시간과 경화습도에 따른 접착 강도 평가)

  • Yoo, Ji-Hoon;Shin, Pyeong-Su;Kim, Jong-Hyun;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.65-70
    • /
    • 2020
  • Epoxy adhesive was mainly used to combine different composite materials. Epoxy adhesive was a typical thermosetting resin that can be bonded by changing from a linear structure to a three-dimensional network structure by curing reaction of epoxy and hardener. The curing conditions of epoxy adhesive were different with different types of hardener such as mixing ratio, curing time, and temperature. These curing conditions affected to the adhesive property of epoxy adhesive. In industry, it was difficult to proceed the applying epoxy adhesive and combining two parts immediately. The adhesive property decreased by humidity and pre-curing of epoxy adhesive in waiting time between two processes. In this paper, the glass fiber reinforced composite (GFRC) was combined with epoxy adhesive and adhesion property between epoxy adhesive and GFRCs was evaluated using single lap shear test. The different waiting times and humidity conditions were applied to epoxy adhesive in room temperature and adhesive property decreased as the waiting time increased. In small amount of humidity, the adhesive property increased because a small amount of moisture in the surroundings accelerated the curing reaction. In certain amount of humidity, however, the adhesion property decreased.

Investigation on Adhesive Properties depending on the Environmental Variation of the Steel Plate Adhesive Strengthening Method by the Epoxy Resin (에폭시 수지 접착 강판보강공법의 환경 변화에 따른 부착 특성 검토)

  • Han, Cheon-Goo;Byun, Hang-Yong;Park, Yong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.107-113
    • /
    • 2007
  • This study is to investigate adhesive properties depending on the temperature, humidity, and freeze-thraw of the Steel plate adhesive strengthening method by the epoxy resin. The results are summarized as following. For the temperature variation, the debonding failure appear only after 1 cycle of temperature varoation because the coefficient of thermal expansion of the epoxy resin is comparatively large, and the bonding strength is decreased. The deformation properties and ultrasonic pulse velocity on each materials are similar until 4 cycles on the dry and moisture test. As the freeze-thraw test, the epoxy resin is degraded easily subjected to freeze-thaw cycle, comparatively easy, so the debonding failure may occur in short term because of the freeze-thaw repeatition.p

Adhesion Properties of Epoxy Resin Adhesive Reinforced Tile (에폭시 수지 접착제를 보강한 타일의 부착성능 평가)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Lee, Sang-yun;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.128-129
    • /
    • 2020
  • In this study, flexural strength and tile adhesion strength were evaluated by using a mortar, dry mortar and an epoxy resin reinforced mortar to examine the adhesion performance by reinforcing the epoxy resin adhesive. As a result, it was clearly confirmed that the effect of improving the adhesion strength by reinforcing the epoxy resin adhesive regardless of the type of tile, and in particular, when applying the epoxy resin adhesive to the porcelain and polishing tiles, it is judged that sufficient adhesion performance can be secured.

  • PDF

New Development of Eco-friendly cementitious Ceramic Tile Adhesive by Thick-Bed method for Polishing tile and Porcelain tile (폴리싱 및 포세린 타일 떠붙임용 시멘트계 친환경 타일접착제 개발)

  • Cho, Chang-Hwan;Lee, Duk-Yong;Lee, Jae-Min;Choi, Il-Joon;Eom, Joo-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.62-63
    • /
    • 2019
  • Currently, polymer-based tile cement (Thin-bed method) and epoxy adhesive (Thick-bed method) are mainly used as tile adhesive for polishing and porcelain. In the case of epoxy adhesive, there is a low economic efficiency, there is a problem that the work efficiency is reduced by mixing the resin and the hardener. In particular, the epoxy contains a bisphenol A and amine component, there is a risk of workable disease when a worker is exposed to odor and harmful gases generated in the epoxy adhesive for a long time. Against this background, it is necessary to analyze the hazards of using epoxy adhesives indoors, and develop cementitious high performance tile adhesive products with significantly lower hazards than epoxy adhesives.

  • PDF

Strength properties of magnesium oxide matrix according to type of phosphate (인산염 종류에 따른 산화마그네슘 경화체의 강도 특성)

  • Lim, Jeong-Jun;Pyeon, Su-Jeong;Kim, Dae-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.79-80
    • /
    • 2018
  • Recently, the interest in remodeling of new and old buildings is increasing worldwide. As a result, the frequency of use of architectural adhesives has increased. Currently, adhesives used in buildings are made of organic materials in most cases, and epoxy resin adhesives are most widely used. However, epoxy resin adhesives contain formaldehyde and VOCs in the room during construction, which can cause sick house syndrome. In case of building fire, it may cause damage due to carbon monoxide generated from organic materials. It is urgent to study the problem of epoxy fill adhesive made of such organic materials. Therefore, the purpose of this study is to investigate the effect of the adhesion of epoxy resin adhesive, which is a problem of epoxy resin adhesive, which is an existing organic adhesive by using inorganic materials such as magnesia and phosphate, And the inorganic adhesive which does not emit the release amount as an inorganic material.

  • PDF

Relaxation of Singular Stress in Adhesively Bonded Joint at High Temperature

  • Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.35-39
    • /
    • 2018
  • This paper deals with the relaxation of singular stresses developed in an epoxy adhesive at high temperature. The interface stresses are analyzed using BEM. The adhesive employed in this study is an epoxy which can be cured at room temperature. The adhesive is assumed to be linearly viscoelastic. First, the distribution of the interface stresses developed in the adhesive layer under the uniform tensile stress has been calculated. The singular stress has been observed near the interface corner. Such singular stresses near the interface corner may cause epoxy layer separated from adherent. Second, the interfacial thermal stress has been investigated. The uniform temperature rise can relieve the stress level developed in the adhesive layer under the external loading, which can be viewed as an advantage of thermal loading. It is also obvious that temperature rise reduces the bonding strength of the adhesive layer. Experimental evaluation is required to assess a trade-off between the advantageous and deleterious effects of temperature.

EXPERIMENTAL STUDY ON PROBABILITY OF STRENGTH FOR EPOXY ADHESIVE-BONDED METALS

  • Seo, Do-Won;Lim, Jae-Kyoo;Jeon, Yang-Bae;Yoon, Ho-Cheol
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.688-693
    • /
    • 2002
  • Adhesive bonding is becoming one of the popular joining techniques in metal industries, since it has some advantages over other techniques such as welding and diffusion bonding, e.g., any dissimilar metals are easily adhesive-bonded together. In this study, the experiments were carried out in order to provide the statistical data with strength evaluation methods: tension, shear and four-point bending tests for thermoplastic epoxy resin based adhesive-bonded metal joints. We should certificate on the probability of the adhesive strength that has the tendency of brittle fracture, the adhesive bonding strength between metals with thermoplastic adhesive has the best probability at four-point bending test. The strength testing method that has higher probability is four-point bending test, shear test and tensile test in order.

  • PDF

Numerical Simulation of Guided Ultrasonic Waves for Inspecting Epoxy Thickness in Aluminum-Epoxy-Aluminum Adhesive Plates (알루미늄-에폭시-알루미늄 접착판에서 에폭시 두께 검사를 위한 유도초음파 수치시뮬레이션)

  • Lee, Ju-Won;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.117-123
    • /
    • 2009
  • This paper presents a numerical simulation of guided ultrasonic waves propagating in aluminum-epoxy-aluminum adhesive plates. In particular, this study investigated the effect of the epoxy thickness on the dispersive patterns, such as the phase velocity and group velocity of guided ultrasonic waves. In addition to investigating the dispersive curves, a numerical simulation using the pulse-echo method was carried out. This simulation showed that the degree of sensitivity of the epoxy thickness is dependent on the curvature of the phase and group dispersion curves, the maximum amplitude of the received time signals, and the peak frequency of the real components of the Fourier transform. Then, the linear relations between the epoxy thickness and the received and transformed signals were constructed to estimate the epoxy thickness.

The Effect of Zirconate Addition on the Joint Properties of Epoxy Adhesive for Car Body Assembly (차체 구조용 에폭시 접착제의 접합부 특성에 미치는 Zirconate 첨가효과)

  • Jeung, Eun-Taek;Lee, Hye-Rim;Lee, So-Jeong;Lim, Chang-Young;Seo, Jong-Dock;Kim, Mok-Soon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.71-76
    • /
    • 2013
  • The effect of zirconate having - NH functional group on the T-peel and lap shear strength of $CaCO_3$ containing structural epoxy adhesive for car body assembly was investigated. Curing behavior of epoxy adhesive samples were investigated by differential scanning calorimeter (DSC) techniques. The addition of zirconate up to 7.5 phr did not affect the curing mechanism of epoxy adhesive. While the small amount of zirconate addition less than 1.1 phr increased the cross-linking density, the excess addition of zirconate resulted in the increase of uncross-linked impurity. From the increase of T-peel and lap shear strength and the change of fracture mode from the adhesive failure to the mixed one, it was considered that the small addition of zirconate was effective in improving the adhesion strength of epoxy adhesive to the adherend and inorganic filler surfaces. The formation of uncross-linked impurity with the excess addition of zirconate was considered to decrease the joint strength by decreasing the cohesive strength of the cured epoxy.