• Title/Summary/Keyword: Epoxy Resins

Search Result 262, Processing Time 0.035 seconds

Thermal Durability of Neon Transformer with Diluent Mixing Ratio (증량제 혼합비율에 따른 네온변압기의 열내구성 평가)

  • Hong, In Kwon;Jeon, Gil Song;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.452-457
    • /
    • 2015
  • The physical properties, such as the heat resistance and thermal durability of the temperature difference fatigue resistance should be excellent when preparing an epoxy type resin for a neon transformer housing. In this study, 50 wt% of $SiO_2$ and silica were selected as a reinforcement and diluent filler for epoxy type resins, respectively. Thermal conductivity and thermal stability were measured as the mixing ratio varied upon the particle sizes. The optimal amount of the mixed silica was 50 wt%. Thermal stability was improved with increasing the amount of larger silica particles. The optimal mixing ratio of differently sized silica particles was 28/3 : 14/18 : 8/10 mesh = 1 : 1 : 1. From these results, it is thought that neon transformer is producible which has excellent thermal durability.

The Effects of 3-(3,4-dichloro phenyl)-1,1-dimethylurea on the Cure of Epoxy/Dicyandiamide System (3-(3,4-dichloro phenyl)-1,1-dimethylurea이 Epoxy/Dicyandiamide계의 경화에 미치는 영향)

  • Kim, Hyung-Soon;Kim, Wan-Young;Kim, Young-Ja
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.963-969
    • /
    • 1996
  • Cure characteristics of DGEBA(diglycidyl ether of bisphenol A)/dicy(dicyandiamide) system containing diuron(3-(3,4-dichloro phenyl) -1,1-dimethylurea) as an accelerator was investigated. The system has shelf life of six months because dicy is insoluble in liquid/solid resins at room temperature. It is generally known that dicy is an adequate curing agent for one component adhesive due to its highly latent property. With increasing the amount of added dicy, reaction heat of DGEBA/dicy system increased and degree of conversion was not varied. For DGEBA/dicy/diuron system, cure temperature decreased about $40^{\circ}C$ and cure reaction became fast by the addition of diuron which activates dicy. $T_g$ of the mixed resin decreased with the amount of accelerator. which was interpreated with molecular structure forming loose chain. Cure kinetics of DGEBA/dicy and DGEBA/dicy/diuron system were explained using Kamal's autocatalytic reaction model. The effect of acceleration was confirmed with that reaction model.

  • PDF

Hardening properties in MMA monomer using UP and EPS in addition hardener (경화제의 첨가에 따른 UP와 EPS 혼입 MMA 수지의 경화특성)

  • Lee, Jung-Hui;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.445-448
    • /
    • 2008
  • The unsaturated polyester(UP) and epoxy resin have a superior material properties and a chemical resistance using sewerage pipes rehabilitation. However, UP and epoxy have not a low temperatures harding, the requirement $8{\sim}11$ hours long times harding and heating system used by reinforcement liner. This study is to evaluate the effects of low temperature harding properties methyl methacrylate(MMA) monomer using expanded polystyrene(EPS) and UP in addition of initiator and promoters. From the test result, viscosity tends to increase with increasing EPS and UP contents. However, harding time change of the MMA resins which it follows in addition of the initiator and promoter.

  • PDF

Effect of Atmospheric Plasma Treatment of Carbon Fibers on Crack Resistance of Carbon Fibers-reinforced Epoxy Composites

  • Park, Soo-Jin;Oh, Jin-Seok;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.106-110
    • /
    • 2005
  • In this work, the effects of atmospheric oxygen plasma treatment of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites was studied. The surface properties of the carbon fibers were determined by acid/base values, Fourier-transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. Also, the crack resistance properties of the composites were investigated in critical stress intensity factor ($K_{IC}$), and critical strain energy release rate mode II ($G_{IIC}$) measurements. As experimental results, FT-IR of the carbon fibers showed that the carboxyl/ester groups (C=O) at 1632 $cm^{-1}$ and hydroxyl group (O-H) at 3450 $cm^{-1}$ were observed for the plasma treated carbon fibers, and the treated carbon fibers had the higher O-H peak intensity than that of the untreated ones. The XPS results also indicated that the $O_{1S}/C_{1S}$ ratio of the carbon fiber surfaces treated by the oxygen plasma led to development of oxygen-containing functional groups. The mechanical interfacial properties of the composites, including $K_{IC}$ (critical stress intensity factor) and $G_{IIC}$ (critical strain energy release rate mode II), were also improved for the oxygen plasma-treated carbon fibersreinforced composites. These results could be explained that the oxygen plasma treatment played an important role to increase interfacial adhesions between carbon fibers and epoxy matrix resins in our composite system.

  • PDF

Hardening properties of MMA Monomer Using EPS in addition of Initiator and Promoter (개시제 및 촉진제의 첨가에 따른 EPS 혼입 MMA 수지의 경화특성)

  • Lee, Jung-Hui;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.929-932
    • /
    • 2008
  • The unsaturated polyester(UP) and epoxy resin have a superior material properties and a chemical resistance using sewerage pipes rehabilitation. However, UP and epoxy have not a low temperatures harding, the requirement $8{\sim}11$ hours long times harding and heating system used by reinforcement liner. This study is to evaluate the effects of low temperature harding properties methyl methacrylate(MMA) monomer using expanded polystyrene(EPS) in addition of initiator and promoters. From the test result, viscosity tends to increase with increasing EPS contents. However, harding time change of the MMA resins which it follows in addition of the initiator and promoter.

  • PDF

Estimation of Hardness and Compressive Strength of SP-100 Aluminum Powder Epoxy (SP-100 알루미늄 분말 에폭시의 경도 및 압축 강도 평가)

  • Han, Jeong-Young;Kim, Myung-Hun;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1041-1046
    • /
    • 2012
  • In this study, we performed experimental tests on five SP-100 aluminum powder epoxy specimens with several after-curing conditions in order to estimate their hardness with temperature and compressive strength. In the surface hardness test, it was found that the higher the after-curing temperature, the higher was the hardness. In particular, it was found that the hardness of the specimens in cases 3 and 4 was much higher than in the other cases. In addition, in the compression tests carried out to evaluate the compressive strength, it was found that the specimens showed relatively similar stiffness and strength with after-curing, and specimens with no after-curing showed compression stress-strain curves similar to those of thermoplastic resins.

Kinetics of Anhydride Curing of Epoxy : Effect of Chain Length of Anhydride (에폭시 무수화물 경화의 동력학적 연구: 무수화물의 사슬 길이 효과)

  • Chung, I.;Lee, J.
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.3-11
    • /
    • 2005
  • The ruling kinetics of epoxy resins with 3 different kinds or alkenylsuccinic anhydride (ASA) having C-8, C-12, and C-16 pendant side chain length with two different catalysts was studied by using differential scanning calorimetry (DSC). Nonisothermal and isoconversional method has been used for characterizing the effect of the pendant side chain length in the curing process. Results or nonisothermal method showed that there was no significant difference in the effect of the pendant side chain length of ASA. But isoconversional analysis showed that the value of the activation energy for the initiation reaction or C-8, C-12, and C-16 were $61.7{\sim}57.7kJ/mol$, $63.0{\sim}57.3 kJ/mol$, and $130.4{\sim}94.2 kJ/mol$, respectively, depending on the catalyst used. The values of activation energy for the initiation is different as reported value of 20 kJ/mol which indicating the difference in the effect of the pendant side chain length of ASA in the initial stage of the reaction.

Effect of Thermal Aging Temperature on Weight Loss and Glass Transition Temperature of Epoxy Adhesives (열화 온도가 에폭시 접착제의 질량변화 및 유리전이온도에 미치는 영향)

  • Park, Soo-Jin;Kim, Jong-Hak;Joo, Hyeok-Jong;Kim, Joon-Hyung;Jin, Fan-Long
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • In this study, the effect of thermal aging temperature on the weight loss, glass transition temperature, and morphology of epoxy adhesives cured with amine (D-230), amide (G-5022), and anhydride (HN-2200) was investigated. As a result, the weight loss of three specimens was increased with increasing the thermal aging temperature. The result was attributed to the thermal aging which was occurred at the surface of adhesive specimens at high aging temperature, resulting in increasing the weight loss of the specimens. According to the DSC result, the glass transition temperature of DGEBA/D-230 and DGEBA/G-5022 samples war increased as the aging temperature increased, whereas the glass transition temperature of DGEBA/HN-2200 samples was constant above aging temperature of $150^{\circ}C$ and aging tine of 7 days. The SEM result indicated that the surface of DGEBA/G-5022 specimen showed more rough topography than that of DGEBA/D-230 or DGEBA/HN-2200 specimen after thermal aging. This could be correlated with the result of weight loss.

The Study on the Weathering Characteristics about Epoxy Adhesive for the Adhesion and Restoration of Metallic Cultural Assets (금속문화재 접합 복원용 에폭시 접착제의 내후성 연구)

  • Lee, Ji-Hyun;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 2010
  • After selecting five types of adhesive epoxy resin for metallic cultural assets such as $Araldite^{(R)}$ rapid type, $Devcon^{(R)}$, $Araldite^{(R)}$ SV427+HV427, $CDK^{(R)}$520, $Araldite^{(R)}$ AW106+HV953 which had already been studied, this paper approached more closely the problem of yellowing and the signal of aging with time passing by connecting the problems with the safety of metallic cultural assets. The change of physical properties according to the change of state of epoxy adhesives was investigated through the change of flexural strength and the change of surface hardness by artificially providing the possible environmental change factors such as ultra-violet ray, and acid base, and how the epoxy chemically changes in its ingredients by the environment was analyzed through FT-IR. As a result of the experiment, for the most part of adhesives brought about the physical change of flexural strength, the change of surface hardness, and the chemical change of chemical ingredients as the product of alcohol, which were respectively different according to the time of ultraviolet irradiation, and acid base change. Under most of the conditions, SV427+HV427 and $CDK^{(R)}$520 were fairly stabilized under each condition of weatherability, but it seems that they should be refrained from being applied in case that the area to restore is thin and wide because the degree of flexural strength of themselves is low. Also, it is found that the preservation environment is very important not only for artifacts but also for the preservation of resins sused for preservation treatment.

Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites (다중벽 탄소나노튜브강화 에폭시 매트릭스 복합재료의 열적 및 동적 점탄성 거동 연구)

  • Seo, Min-Kang;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.401-406
    • /
    • 2005
  • In this work, the effect of chemical treatment of multiwalled carbon nanotubes (MWNTs) on glass transition temperature (Tg), thermal stability, and dynamic viscoelastic behaviors of MWNTs-reinforced epoxy matrix composites has been studied by differencial scanning calorimeter (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) measurements. The MWNTs were chemically treated with 35 wt% $H_3PO_4$ (A-MWNTs) or 35 wt% KOH (B-MWNTs) solutions and the changes of surface properties of chemically treated MWNTs were examined by pH, acid and base values, Fourier transfer-infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS) analyses. The chemical treatments based on acid and base reactions led to a significant change of surface characteristics and chemical compositions of the MWNTs, especially A-MWNTs/epoxy composites had higher thermal stability and dynamic viscoelastic properties than those of B-MWNTs and non-treated MWNTs/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.