• 제목/요약/키워드: Epoxy Resin System

검색결과 224건 처리시간 0.023초

첨가제 사용에 의한 Epoxy Resin 용액의 인화점 측정 (Measurement of Flash Points of Epoxy Resin Solutions by Using Additives)

  • 하동명
    • 한국안전학회지
    • /
    • 제22권3호
    • /
    • pp.22-27
    • /
    • 2007
  • The knowledge of the flash point of the various liquid substances is required because of process safety and control in industrial fire protection. The epoxy resin is one of versatile resins that has wide selection of using curing agents and additives to achieve various applications such as coatings, adhesives, interior materials, reinforced plastics and electrical insulation. In this study, the lower flash points for p-xylene+epoxy resin, o-xylene+epoxy resin and n-butanol+epoxy resin systems were measured by using Pensky-Martens closed cup tester. The lower flash points for p-xylene+epoxy resin, o-xylene+epoxy resin and n-butanol+epoxy resin systems rapidly increased 80wt%, 90wt% and 95wt% of epoxy resin concentration, respectively. This results serve as a guide to estimate flash point of any epoxy resin solution.

새로운 반도체 Packaging용 Ethoxysilyl Bisphenol A Type Epoxy Resin System의 경화특성 연구 (Cure Characteristics of Ethoxysilyl Bisphenol A Type Epoxy Resin Systems for Next Generation Semiconductor Packaging Materials)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.19-26
    • /
    • 2017
  • The cure properties of ethoxysilyl bisphenol A type epoxy resin (Ethoxysilyl-DGEBA) systems with different hardeners were investigated, comparing with DGEBA and Diallyl-DGEBA epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The Ethoxysilyl-DGEBA epoxy resin system showed lower cure conversion rates than DGEBA and Diallyl-DGEBA epoxy resin systems. The conversion rates of these epoxy resin systems with DDM hardener are lower than those with HF-1M hardener. It can be considered that the optimum hardener for Ethoxysilyl-DGEBA epoxy resin system is Phenol Novolac type. These lower cure conversion rates in the Ethoxysilyl-DGEBA epoxy resin systems could be explained by the retardation of reaction molecule movements according to the formation of organic-inorganic hybrid network structure by epoxy and ethoxysilyl group in Ethoxysilyl- DGEBA epoxy resin system.

  • PDF

FO-WLP (Fan Out-Wafer Level Package) 차세대 반도체 Packaging용 Isocyanurate Type Epoxy Resin System의 경화특성연구 (Cure Properties of Isocyanurate Type Epoxy Resin Systems for FO-WLP (Fan Out-Wafer Level Package) Next Generation Semiconductor Packaging Materials)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.65-69
    • /
    • 2019
  • The cure properties of ethoxysilyl diglycidyl isocyanurate(Ethoxysilyl-DGIC) and ethylsilyl diglycidyl isocyanurate (Ethylsilyl-DGIC) epoxy resin systems with a phenol novolac hardener were investigated for anticipating fan out-wafer level package(FO-WLP) applications, comparing with ethoxysilyl diglycidyl ether of bisphenol-A(Ethoxysilyl-DGEBA) epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The isocyanurate type epoxy resin systems represented the higher cure conversion rates comparing with bisphenol-A type epoxy resin systems. The Ethoxysilyl-DGIC epoxy resin system showed the highest cure conversion rates than Ethylsilyl-DGIC and Ethoxysilyl-DGEBA epoxy resin systems. It can be figured out by kinetic parameter analysis that the highest conversion rates of Ethoxysilyl-DGIC epoxy resin system are caused by higher collision frequency factor. However, the cure conversion rate increases of the Ethylsilyl-DGEBA comparing with Ethoxysilyl-DGEBA are due to the lower activation energy of Ethylsilyl-DGIC. These higher cure conversion rates in the isocyanurate type epoxy resin systems could be explained by the improvements of reaction molecule movements according to the compact structure of isocyanurate epoxy resin.

경화제 변화에 따른 WLP(Wafer Level Package)용 신규 Epoxy Resin System의 경화특성 (Cure Properties of Novel Epoxy Resin Systems for WLP (Wafer Level Package) According to the Change of Hardeners)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.57-67
    • /
    • 2022
  • The curing characteristics of naphthalene type epoxy resin systems according to the change of curing agent were investigated to develop a new next-generation EMC(Epoxy Molding Compound) with excellent warpage characteristics, low thermal expansion, and excellent fluidity for WLP(Wafer Level Package). As epoxy resins, DGEBA, which are representative bisphenol type epoxy resins, NE-16, which are the base resins of naphthalene type epoxy resins, and NET-OH, NET-MA, and NET-Epoxy resins newly synthesized based on NE-16 were used. As a curing agent, DDM (Diamino Diphenyl Methane) and CBN resin with naphthalene moiety were used. The curing reaction characteristics of these epoxy resin systems with curing agents were analyzed through thermal analysis experiments. In terms of curing reaction mechanism, DGEBA and NET-OH resin systems follow the nth curing reaction mechanism, and NE-16, NET-MA and NET-Epoxy resin systems follow the autocatalytic curing reaction mechanism in the case of epoxy resin systems using DDM as curing agent. On the other hand, it was found that all of them showed the nth curing reaction mechanism in the case of epoxy resin systems using CBN as the curing agent. Comparing the curing reaction rate, the epoxy resin systems using CBN as the curing agent showed a faster curing reaction rate than them with DDM as a hardener in the case of DGEBA and NET-OH epoxy resin systems following the same nth curing reaction mechanism, and the epoxy resin systems with a different curing mechanism using CBN as a curing agent showed a faster curing reaction rate than DDM hardener systems except for the NE-16 epoxy resin system. These reasons were comparatively explained using the reaction rate parameters obtained through thermal analysis experiments. Based on these results, low thermal expansion, warpage reduction, and curing reaction rate in the epoxy resin systems can be improved by using CBN curing agent with a naphthalene moiety.

Effects of Reactive Diluents on the Electrical Insulation Breakdown Strength and Mechanical Properties in an Epoxy System

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권4호
    • /
    • pp.199-202
    • /
    • 2013
  • In order to study the effect of reactive diluents on the electrical insulation breakdown strength and mechanical properties of, a polyglycol and an aliphatic epoxy were individually introduced to an epoxy system. Reactive diluents were used in order to decrease the viscosity of the epoxy system; polyglycol acted as a flexibilizer and 1,4-butanediol diglycidyl ether (BDGE) acted as an aliphatic epoxy, which then acted as a chain extender after curing reaction. The ac electrical breakdown strength was estimated in sphere-to-sphere electrodes and the electrical breakdown strength was estimated by Weibull statistical analysis. The scale parameters of the electrical breakdown strengths for the epoxy resin, epoxy-polyglycol, and epoxy-BDGE were 45.0, 46.2, and 45.1 kV/mm, respectively. The flexural and tensile strengths for epoxy-BDGE were lower than those of the epoxy resin and those for epoxy-polyglycol were lower than those of the epoxy resin.

DGEBA에 대한 폴리트리아졸술폰의 강인화 효과 연구 (Effect of Polytriazolesulfone Addition on Fracture Toughness of DGEBA Epoxy Resin)

  • 권웅;이민규;한민우;정의경
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.118-126
    • /
    • 2019
  • This study aims to investigate the effect of polytriazolesulfone(PTS) addition on fracture toughness of diglycidyl ether of bisphenol A(DGEBA) and 4,4'-diaminodiphenylsulfone(DDS). Various amounts of PTS were added to DGEBA/4,4'-DDS in diazide and dialkyne monomer forms and polymerized during the epoxy curing process. Fracture toughness(K1C), tensile properties and thermal stability of the PTS added epoxy resin were evaluated and compared with those of PES, the conventional high Tg toughening agent, added epoxy resin. Fracture toughness of the PTS added epoxy resin was dramatically improved up to 133%, as the amount of PTS added increased, whereas that of the PES added epoxy resin was improved by only 67%. The tensile strength of PTS added DGEBA/4,4'-DDS was similar to the epoxy resin without PTS and tensile modulus was improved by 20%. And thermal stability of the PTS added epoxy resin was improved up to 14%. Therefore, PTS addition to DGEBA/4,4'-DDS, as a toughening agent, is very effective way to improve its fracture toughness without any lowering in other properties.

Amine Terminated Polyetherimide/에폭시 수지 시스템의 경화공정연구와 파괴인성에 관한 연구 (A Study on the Curing Behavior and Toughness of Amine Terminated Polyetherimide/Epoxy Resin System)

  • 김민영;이광기;김원호;황병선;김대식;박종만
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA:diglycidyl ether of bisphenol A)/anhydride (NMA:nadic methyl anhydride) resin with synthesized amino terminated polyetherimide (AT-PEI) were studied using differential scanning calorimetry (DSC) and Dynamic Mechanical Analysizer(DMA) under isothermal condition to determine the reaction parameters and gel-vitrification behavior. The fracture toughness of AT-PEI 20phr/epoxy resin system was improved over 224% and 42.5% more than neat epoxy resin and commercial PEI/Epoxy Resin System.

  • PDF

Synthesis and Characterization of a Novel Silicon-Containing Epoxy Resin

  • Park Soo-Jin;Jin Fan-Long;Lee Jae-Rock
    • Macromolecular Research
    • /
    • 제13권1호
    • /
    • pp.8-13
    • /
    • 2005
  • A novel silicon-containing epoxy resin, the diglycidylether of bisphenol A-silicon (DGEBA-Si), was synthesized and characterized. The properties of the DGEBA-Si epoxy resin cured with 4,4-diaminodiphenyl methane (DDM), including its cure behavior, glass transition temperature, thermal stability, and mechanical strength were investigated. The char yield of the DGEBA-Si/DDM system was higher than that of a commercial DGEBA/DDM system, indicating that the DGEBA-Si epoxy resin showed good flame-retardance. The cured DGEBA-Si/DDM specimens possessed lower glass transition temperatures and higher mechanical properties than DGEBA/DDM specimens. These features were attributed to the introduction of siloxane groups into the main chain of the epoxy resin, which resulted in the improved flexibility of the cured DGEBA-Si/DDM system.

안료 첨가에 따른 에폭시 수지의 기계적 물성 변화 연구 (Effect of a Pigment Addition on Mechanical Properties of Epoxy Resin)

  • 권웅;한민우;김창규;박성민;정의경
    • 한국염색가공학회지
    • /
    • 제33권2호
    • /
    • pp.79-86
    • /
    • 2021
  • This study investigated the effect of a pigment (C. I. Pigment Red 122) addition on mechanical properties of the epoxy resin, diglycidyl ether of bisphenol F (DGEBF) and G640 curing agent. The K/S value, thermal properties, tensile properties, and fracture toughness of the prepared epoxy samples were evaluated. When the pigment was added to the DGEBF/G640 epoxy system, the color of the epoxy resin changed to red from transparent and yellowish color, and the K/S value in the red region increased as the pigment content increased. When the pigment content was increased up to 0.1 phr, the tensile strength was improved up to 21.8 %, whereas the pigment content was over 0.1 phr, the tensile strength decreased. The fracture toughness was improves up to 23.1 % until the amount of pigment added was up to 0.2 phr, and then decreased when the amount of the pigment added was more than 0.2 phr. This attributed to the aggregation of the pigments in the epoxy resin when the amount of the pigment added was more than 0.2 phr. Therefore, the coloration of the epoxy resin with an organic pigment must be carried out very carefully because the coloration of epoxy resin affects its mechanical properties.

Effects of Maleinized Polybutadiene on the Elongation and Impact Peel Strength of Epoxy Resins

  • Albin Davies;Archana Nedumchirayil Manoharan;Youngson Choe
    • 접착 및 계면
    • /
    • 제25권1호
    • /
    • pp.162-168
    • /
    • 2024
  • The effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins including adhesion strength, elongation and impact peel resistance was investigated in this study, in which MPB is an anhydride-functionalized polybutadiene prepolymer. Different molecular weights (3.1K and 5.6K) of MPB were added to diglycidyl ether bisphenol-A (DEGBA), an epoxy resin, to increase its impact peel strength and elongation. At various loading percent (5, 10, 15, 20 and 25 wt%) of MPB in the epoxy resin, significant improvements of mechanical properties were observed. According to the comparative analysis results, the modified epoxy system with 15 wt% (3.1K) MPB exhibited the highest lap shear strength, about 40% higher than that of neat epoxy. The tensile strength and elongation steadily and simultaneously increased as the loading percent of MPB increased. The impact peel strengths at low (-40℃) and room (23℃) temperatures were substantially improved by MPB incorporation into epoxy resins. Reactive and flexible MPB prepolymer seems to construct strong nano-structured networks with rigid epoxy backbones without sacrificing the tensile and adhesion strengths while increasing impact resistance/toughness and elongation properties. For higher impact peel while maintaining adhesion and tensile strengths, approximately 10-15 wt% MPB loading in epoxy resin was suggested. Consequently, incorporation of functionalized MPB prepolymer into epoxy system is an easy and efficient way for improving some crucial mechanical properties of epoxy resins.