• Title/Summary/Keyword: Epitaxial crystal growth

Search Result 130, Processing Time 0.025 seconds

Fabrication Processes of Interconnection Systems for Bare Chip Burn-In Tests Using Epitaxial Layer Growth and Etching Techniques of Silicon (실리콘 에피층 성장과 실리콘 에칭기술을 이용한 Bare Chip Burn-In 테스트용 인터컨넥션 시스템의 제조공정)

  • 권오경;김준배
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.174-181
    • /
    • 1995
  • Multilayered silicon cantilever beams as interconnection systems for bare chip burn-in socket applications have been designed, fabricated and characterized. Fabrication processes of the beam are employing standard semiconductor processes such as thin film processes and epitaxial layer growth and silicon wet etching techniques. We investigated silicon etch rate in 1-3-10 etchant as functions of doping concentration, surface mechanical stress and crystal defects. The experimental results indicate that silicon etch rate in 1-3-10 etchant is strong functions of doping concentration and crystal defect density rather than surface mechanical stress. We suggested the new fabrication processes of multilayered silicon cantilever beams.

  • PDF

Effect of low-temperature GaN grown at different temperature on residual stress of epitaxial GaN (저온 GaN의 성장 온도에 따른 에피택셜 GaN의 stress relaxation 효과)

  • Lee, Seung Hoon;Lee, Joo Hyung;Oh, Nuri;Yi, Sung Chul;Park, Hyung Bin;Shin, Ran Hee;Park, Jae Hwa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.83-88
    • /
    • 2022
  • To improve the crystallinity of GaN, there are researches on surface treatment to control the difference in physical properties between GaN and heterogeneous substrate. 'Low-temperature GaN (LT-GaN)' is one of the ways to solve the problem and we investigated the relationship between growth temperature and properties of LT-GaN in our homemade vertical type HVPE. The LT-GaN nuclei were formed on the sapphire surface at low growth temperatures and they presented differences in the density and crystallinity depending on the growth temperature. Significantly, the stress relaxation effect on the epitaxial GaN (epi-GaN) was affected by the crystallinity of LT-GaN. However, the high crystallinity of LT-GaN exacerbated the crystal quality of epi-GaN because they worked as a catalyst and seed of polycrystalline.

Epitaxial Growth of Boron-doped Si Film using a Thin Large-grained Si Seed Layer for Thin-film Si Solar Cells

  • Kang, Seung Mo;Ahn, Kyung Min;Moon, Sun Hong;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • We developed a method of growing thin Si film at $600^{\circ}C$ by hot wire CVD using a very thin large-grained poly-Si seed layer for thin-film Si solar cells. The seed layer was prepared by crystallizing an amorphous Si film by vapor-induced crystallization using $AlCl_3$ vapor. The average grain size of the p-type epitaxial Si layer was about $20{\mu}m$ and crystallographic defects in the epitaxial layer were mainly low-angle grain boundaries and coincident-site lattice boundaries, which are special boundaries with less electrical activity. Moreover, with a decreasing in-situ boron doping time, the mis-orientation angle between grain boundaries and in-grain defects in epitaxial Si decreased. Due to fewer defects, the epitaxial Si film was high quality evidenced from Raman and TEM analysis. The highest mobility of $360cm^2/V{\cdot}s$ was achieved by decreasing the in-situ boron doping time. The performance of our preliminary thin-film solar cells with a single-side HIT structure and $CoSi_2$ back contact was poor. However, the result showed that the epitaxial Si film has considerable potential for improved performance with a reduced boron doping concentration.

Characteristics of Free-Standing GaN Substrates grown by Hydride Vapor Phase Epitaxy (Hydride Vapor Phase Epitaxy 법으로 성장된 Free-Standing GaN 기판의 특성에 관한 연구)

  • Kim, Hwa-Mok;Choe, Jun-Seong;O, Jae-Eung;Yu, Tae-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.3
    • /
    • pp.14-19
    • /
    • 2000
  • Free-standing GaN single crystal substrates have been obtained by growing thick GaN epitaxial layers on (0001) sapphire substrates using hydride vapor phase epitaxy (HVPE) method. After growing the GaN thick film of 200 ${\mu}{\textrm}{m}$, a free-standing GaN with a size of 10 mm $\times$10 mm were obtained by mechanical polishing process to remove sapphire substrate. Crack-free GaN substrates have been obtained by GaCl pre-treatment prior to the growth of GaN epitaxial layers. Properties of free-standing GaN substrates have been compared with those of lateral epitaxial overgrowth (LEO) GaN films by double-crystal x-ray diffraction (DC-XRD), cathodoluminescence (CL) and photoluminescence (PL) measurements.

  • PDF

Growth of $Er:LiNbO_3$ single crystal thin film with high crystal quality by LPE method (LPE법에 의한 고품질 $Er:LiNbO_3$ 단결정 박막의 성장)

  • Shin, Tong-Il;Lee, Hyun;Shur, Joong-Won;Byungyou Hong;Yoon, Dae-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.305-320
    • /
    • 1999
  • It was grown Er2O3 doped LiNbO3 single crystal thin films with high crystal quality by liquid phase epitaxial (LPE) method. Er2O3 was doped with a concentration of 1, 3, and 5 mol% respectively. After the growth of single crystal thin film, we examined the crystallinity and the lattice mismatch along the c-axis between the film and the substrate with the variation of Er2O3 dopant using X-ray double crystal technique. There were no lattice mismatches along the c-axis for the undoped and the films doped with 1 and 3 mol% of Er2O3. For 5 mol% of Er2O3 doped film, there was a lattice mismatch of 7.86x10-4nm along the c-axis.

  • PDF

Growth of Er : $LiNbO_{3}$ single crystal thin film with high crystal quality by LPE method

  • Tong-Ik Shin;Hyun Lee;Joong-Won Shur;Byungyou Hong;Dae-Ho Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.295-298
    • /
    • 1999
  • High quality of $Er_{2}O_{3}$ doped $LiNbO_{3}$ single crystal thin films were grown by the liquid phase epitaxial (LPE) method using $Er_{2}O_{3}$ doped at concentrations of 1,3, and 5 mol% respectively. After the growth of single crystal thin film, the crystallinity and the lattice mismatch along the c-axis between the film and the substrate was examined as a function of the variations of{{{{{Er}_{2}{O}_{3}}}}} dopant concentration using a X-ray double crystal technique. There was no lattice mismatch along the c-axis for the undoped film and those doped with 1 and 3 mol% of $Er_{2}O_{3}$. For 5 mol% of $Er_{2}O_{3}$ doped film, the lattice mismatch was $7.86{\times}10^{-4}$nm along the c-axis.

  • PDF

Hot-wall epitaxial growth and characteristic of CdTe films (Hot-wall epitaxy법에 의한 CdTe 박막의 성장과 특성)

  • 박효열;조재혁;진광수;황영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.140-144
    • /
    • 2004
  • CdTe thin films were grown on GaAs (100) substrates by hot wall epitaxy method. From the XRD measurements, it was found that CdTe/GaAs (100) film was grown as a single crystals with the different from growth plane of (III), and growth rate of CdTe thin films was found to be 30 $\AA/sec$ by SEM. To acquire a high quality CdTe thin film, the optimum temperature for the source and substrate are found to be $500^{\circ}C$ and $320^{\circ}C$, respectively, which was checked by PL.

TEXTURE AND RELATED MICROSTRUCTURE AND SURF ACE TOPOGRAPHY OF VAPOR DEPOSITS

  • Lee, Dong-Nyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.301-313
    • /
    • 1996
  • The texture of vapor deposits(PVD and CVD) changes from the orientation that places the lowest energy lattice plane parallel to the substrate under the condition of low atom or ion concentration adjacent to the deposit, to the orientation that places the higher energy crystal planes parallel to the substrate as the atom or ion concentration adjacent to the deposit increases. However, in the early stage of deposition, the deposit-substrate interface energy and the surface energy constitute the most important energies of the system. Therefore, if the lattice match is established between the substrate and the deposit without generating much strain energy, the epitaxial growth takes place to reduce the interfacial energy. When the epitaxial growth does not take place, the surface energy is dominant in the early stage of deposition and the lowest energy crystal plane tends to be placed parallel to the substrate up to a critial thickness. The thickness depends on the deposition condition. If the deposition condition does not favor placing the lowest energy crystal plane parallel to the substrate, the initial texture will change to that compatible with the deposition condition as the film thickness increases, and the texture turnover thickness will be short. The microstructure and surface topography of deposits are related to their texture.

  • PDF

6H-SiC epitaxial growth and crystal structure analysis (6H-SiC 에피층 성장과 결정구조 해석)

  • Kook-Sang Park;Ky-Am Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.197-206
    • /
    • 1997
  • A SiC epilayer on the 6H-SiC crystal substrate was grown by chemical vapor deposition (CVD). The crystal structure of the SiC epilayer was investigated by using the X-ray diffraction patterns and the Roman scattering spectroscopy. The SiC epilayer on the 6H-SiC substrate was grown to be homoepilayer by CVD. In order to distinguish a certain SiC polytype mixed in the SiC crystal grown by the modified Lely method, we have calculated the X-ray diffraction intensities and Brags angles of the typical SiC crystal powders. By comparing the measured X-ray diffraction pattern with the calculated ones, it was identified that the SiC crystal grown by the modified Lely method was the 6H-SiC crystal mixed some 15R-SiC.

  • PDF

Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals

  • Yang, Dong Won;Park, Won Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.108-115
    • /
    • 2018
  • The increasing demands for three-dimensional (3D) electronic and optoelectronic devices have triggered interest in epitaxial growth of 3D semiconductor materials. However, most of the epitaxially-grown nano- and micro-structures available so far are limited to certain forms of crystal arrays, and the level of control is still very low. In this review, we describe our latest progress in 3D epitaxy of oxide and nitride semiconductor crystals. This paper covers issues ranging from (i) low-temperature solution-phase synthesis of a well-regulated array of ZnO single crystals to (ii) systematic control of the axial and lateral growth rate correlated to the diameter and interspacing of nanocrystals, as well as the concentration of additional ion additives. In addition, the critical aspects in the heteroepitaxial growth of GaN and InGaN multilayers on these ZnO nanocrystal templates are discussed to address its application to a 3D light emitting diode array.