• 제목/요약/키워드: Epitaxial

검색결과 896건 처리시간 0.025초

HVPE(Hydride Vapor Phase Epitaxiy) 성장법으로 Ti metal mask를 이용한 GaN 성장연구 (GaN Grown Using Ti Metal Mask by HVPE(Hydride Vapor Phase Epitaxiy))

  • 김동식
    • 전자공학회논문지 IE
    • /
    • 제48권2호
    • /
    • pp.1-5
    • /
    • 2011
  • HVPE법으로 $3{\mu}m$의 GaN epi를 성장하고 이 위에 DC 마그네트론 Sputter를 이용하여 Ti stripe 패턴 형성하였으며 다시 HVPE를 이용하여 $120{\mu}m$ ~ $300{\mu}m$ 두께의 GaN를 overgrowth하였다. 성장된 GaN는 SEM 측정으로 Ti 패턴한 부분에서 void가 관찰되었고 보다 두꺼운 GaN를 성장시에는 크랙이 void를 따라 발생할 수 있음을 확인하였으며 XRD측정으로 FWHM은 188 arcsec로 측정되었다. 성장전의 GaN epi와의 반치폭을 비교하였을 때 패턴에 사용된 Ti는 overgrowth시 결정성에는 크게 영향을 주지 않는다는 것을 확인하였다.

증착과 식각의 연속 공정을 이용한 저온 선택적 실리콘-게르마늄 에피 성장 (Low-Temperature Selective Epitaxial Growth of SiGe using a Cyclic Process of Deposition-and-Etching)

  • 김상훈;이승윤;박찬우;심규환;강진영
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.657-662
    • /
    • 2003
  • This paper presents a new fabrication method of selective SiGe epitaxial growth at 650 $^{\circ}C$ on (100) silicon wafer with oxide patterns by reduced pressure chemical vapor deposition. The new method is characterized by a cyclic process, which is composed of two parts: initially, selective SiGe epitaxy layer is grown on exposed bare silicon during a short incubation time by SiH$_4$/GeH$_4$/HCl/H$_2$system and followed etching step is achieved to remove the SiGe nuclei on oxide by HCl/H$_2$system without source gas flow. As a result, we noted that the addition of HCl serves not only to reduce the growth rate on bare Si, but also to suppress the nucleation on SiO$_2$. In addition, we confirmed that the incubation period is regenerated after etching step, so it is possible to grow thick SiGe epitaxial layer sustaining the selectivity. The effect of the addition of HCl and dopants incorporation was investigated.

패턴된 GaN 에피층 위에 ZnO 막대의 수직성장 (Growth of vertically aligned Zinc Oxide rod array on patterned Gallium Nitride epitaxial layer)

  • 최승규;이성학;장재민;김정아;정우광
    • 한국재료학회지
    • /
    • 제17권5호
    • /
    • pp.273-277
    • /
    • 2007
  • Vertically aligned Zinc Oxide rod arrays were grown by the self-assembly hydrothermal process on the GaN epitaxial layer which has a same lattice structure with ZnO. Zinc nitrate and DETA solutions are used in the hydrothermal process. The $(HfO_2)$ thin film was deposited on GaN and the patterning was made by the photolithography technique. The selective growth of ZnO rod was achieved with the patterned GaN substrate. The fabricated ZnO rods are single crystal, and have grown along hexagonal c-axis direction of (002) which is the same growth orientation of GaN epitaxial layer. The density and the size of ZnO rod can be controlled by the pattern. The optical property of ordered array of vertical ZnO rods will be discussed in the present work.

Tunable microwave device에 사용될 수 있는 (Ba,Sr)$TiO_3$ 박막의 유전특성 향상에 관한 연구 (Enhanced dielectric properties of (Ba.Sr)$TiO_3$ thin films applicable to tunable microwave devices)

  • 박배호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.73-76
    • /
    • 2001
  • We deposited epitaxial $Ba_{0.6}$S $r_{0.4}$Ti $O_3$(BST) films having thickness of 400 nm on MgO(001) substrates, where a 10 nm thick $Ba_{1-x}$S $r_{x}$Ti $O_3$(x=0.1-0.7) interlayer was inserted between BST and MgO to manipulate the stress of the BST films. Since the main difference of those epitaxial BST films was the lattice constant of the interlayers, we were very successful in controlling the stress of the BST films. BST films under small tensile stress showed larger dielectric constant than that without stress as well as those under compressive stress. Stress relaxation was investigated using epitaxial BST films with various thicknesses grown on different interlayers. For BST films grown on $Ba_{0.7}$S $r_{0.3}$Ti $O_3$ interlayers, the critical thickness was about 600 nm. On the other hand, the critical thickness of single-layer BST film was less than 100 nm.00 nm.m.m.m.

  • PDF

GaAs MESFET의 파괴특성 향상을 위한 recess게이트 구조 (The recess gate structure for the improvement of breakdown characteristics of GaAs MESFET)

  • 장윤영;송정근
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권5호
    • /
    • pp.376-382
    • /
    • 1994
  • In this study we developed a program(DEVSIM) to simulate the two dimensional distribution of the electrostatic potential and the electric field of the arbitrary structure consisting of GaAs/AlGaAs semiconductor and metal as well as dielectric. By the comparision of the electric field distribution of GaAs MESFETs with the various recess gates we proposed a suitable device structure to improve the breakdown characteristics of MESFET. According to the results of simulation the breakdown characteristics were improved as the thickness of the active epitaxial layer was decreased. And the planar structure, which had the highly doped layer under the drain for the ohmic contact, was the worst because the highly doped layer prevented the space charge layer below the gate from extending to the drain, which produced the narrow spaced distribution of the electrostatic potential contours resulting in the high electric field near the drain end. Instead of the planar structure with the highly doped drain the recess gate structure having the highly doped epitaxial drain layer show the better breakdown characteristics by allowing the extention of the space charge layer to the drain. Especially, the structure in which the part of the drain epitaxial layer near the gate show the more improvement of the breakdown characteristics.

  • PDF

4.5 kV급 Super Junction IGBT의 Pillar 간격에 따른 전기적 특성 분석 (Analysis of Electrical Characteristics According to the Pillar Spacing of 4.5 kV Super Junction IGBT)

  • 이건희;안병섭;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.173-176
    • /
    • 2020
  • This study focuses on a pillar in which is implanted a P-type maneuver under a P base. This structure is called a super junction structure. By inserting the pillar, the electric field concentrated on the P base is shared by the pillar, so the columns can be dispersed while maintaining a high breakdown voltage. Ten pillars were generated during the multi epitaxial process. The interval between pillars is varied to optimize the electric field to be concentrated on the pillar at a threshold voltage of 6 V, a yield voltage of 4,500 V, and an on-state voltage drop of 3.8 V. The density of the filler gradually decreased when the interval was extended by implanting a filler with the same density. The results confirmed that the size of the depletion layer between the filler and the N-epitaxy layer was reduced, and the current flowing along the N-epitaxy layer was increased. As the interval between the fillers decreased, the cost of the epitaxial process also decreased. However, it is possible to confirm the trade-off relationship that deteriorated the electrical characteristics and efficiency.

Epitaxial $CoSi_2$접촉 p+/n 접합의 I-V 특성 (I-V Characteristics of Epitaxial $CoSi_2$-contacted p+/n Junctions)

  • 구본철;김시중;김주연;배규식
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.908-913
    • /
    • 2000
  • CoSi$_2$/p+/n diodes(bilayer diodes) were fabricated by using epitaxial CoSi$_2$grown from Co/Ti bilayer as a diffusion source. The I-V characteristics of p+/n diodes were measured and compared with those of diode made from Co monolayer (monolayer diode). Monolayer diodes showed typical p+n junction characteristics with the leakage current of as low as 10$^{-12}$ A and forward current 6-orders higher than the leakage current, when drive-in annealed at 90$0^{\circ}C$ for 20 sec.. On the other hand, bilayer diodes showed the Schottky-like behaviors with forward currents rather higher than those of monolyer diodes, but with too high leakage currents, when drive-in annealed at $700^{\circ}C$ or higher. However, when the annealing temperature was lowered to $700^{\circ}C$ and annealing time was increased to 60 sec., the leakage current was reduced to 10$^{-11}$ A and thus sho3wed typical diode characteristics. The high leakage currents for diodes annealed at $700^{\circ}C$ or higher was attributed to Shannon contacts formed due to unremoved Co-Ti-Si precipitates. But when annealed at 50$0^{\circ}C$, B ions diffused in the direction of the surface layer, and thus the leakage currents were reduced by removing Shannon contacts.

  • PDF

Growth of the single and epitaxial MgO film on Fe(001)

  • Kim, Hi-Dong;Dugerjav, Otgonbayar;Seo, Jae-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.355-355
    • /
    • 2010
  • The epitaxial growth of MgO film on Fe(001) has been investigated by scanning tunneling microscopy (STM). After confirming the clean Fe(001)-c($2{\times}2$) substrate by STM, Mg was deposited at room temperature (RT) under $O_2$ partial pressure of $10^{-7}\;Torr$. The MgO was grown as clusters, not as an epilayer even after postannealing at $400^{\circ}C$, as shown in Figure (a). On the contrary, when Mg was deposited on Fe(001)-c($2{\times}2$) at RT and post-oxidized through exposing $O_2$ at partial pressure $10^{-7}\;Torr$, the thin-layered film with some clusters was formed. Extended-annealing at $400^{\circ}C$ reduced the cluster density, and finally the single and epitaxial MgO-c($2{\times}2$) film was formed on Fe(001)-c($2{\times}2$) as shown in Figure (b). This ultrathin MgO film formed on Fe is expected to be applied to many technological applications, such as catalysis, microelectronics, and magnetic devices.

  • PDF

Geometrical and Electronic Structure of Epitaxial Graphene on SiC(0001) : A Scanning Tunneling Microscopy Study

  • Ha, Jeong-Hoon;Yang, Hee-Jun;Baek, Hong-Woo;Chae, Jung-Seok;Hwang, Beom-Yong;Kuk, Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.368-368
    • /
    • 2010
  • Monolayers of graphite can be grown by fine controlled surface graphitization on the surfaces of various metallic and semiconducting materials. Epitaxial graphene grown on polished silicon carbide crystal surfaces has drawn much attention due to well known vacuum annealing procedures from surface analysis methods, especially scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). In this study, we have grown single layer and few layer graphene on silicon terminated 6H-SiC(0001) crystals. The growth of graphene layers were observed by low energy electron diffraction(LEED) patterns. Scanning tunneling microscopy and spectroscopy measurements were performed to illustrate the electronic structure which may display some clue on the influence of the underlying structure. Spatially resolved STS results acquired at the edges of epitaxial graphene show in detail the electron density of states, which is compared to theoretical calculations. STM measurements were also done on graphene films grown by chemical vapor deposition(CVD) and transferred onto a SiC(0001) crystal. These observations may provide a hint for the understanding of carrier scattering at the edges.

  • PDF

Antiferroelectric and antiferrodistortive phase transitions in Ruddlesden-Popper Pb2TiO4 from first-principles

  • Xu, Tao;Shimada, Takahiro;Wang, Jie;Kitamura, Takayuki
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2017
  • This work employed density functional theory to investigate the structural and ferroelectric properties of the Ruddlesden-Popper (RP) phase of lead titanate, $Pb_2TiO_4$, as well as its phase transitions with epitaxial strain. A wealth of novel structural instabilities, which are absent in the host $PbTiO_3$ material, were identified in the RP phase through phonon soft-mode analysis. Our calculations showed that the ground state of $Pb_2TiO_4$ is antiferroelectric, distinct from the dominant ferroelectric phase in the corresponding host material. In addition, applied epitaxial strain was found to play a key role in the interactions among the instabilities. The induction of a sequence of antiferroelectric and antiferrodistortive (AFD) phase transitions by epitaxial strain was demonstrated, in which the ferroic instability and AFD distortion were cooperative rather than competitive, as is the case in the host $PbTiO_3$. The RP phase in conjunction with strain engineering thus represents a new approach to creating ferroic orders and modifying the interplay among structural instabilities in the same constituent materials, enabling us to tailor the functionality of perovskite oxides for novel device applications.