• Title/Summary/Keyword: Epipolar Image

Search Result 94, Processing Time 0.03 seconds

3D measuring system by using the stereo vision (스테레오비젼을 이용한 3차원 물체 측정 시스템)

  • 조진연;김기범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.224-228
    • /
    • 1997
  • Computer vision system become more important as the researches on inspection systems, intelligent robots , diagnostic medical systems is performed actively. In this paper, 3D measuring system is developed by using stereo vision. The relation between left image and right image is obtained by using 8 point algorithm, and fundamental matrix, epipole and 3D reconstruction algorithm are used to measure 3D dimensions. 3D measuring system was developed by Visual Basic, in which 3D coordinates would be obtained by simple mouse clicks. This software would be applied to construction area, home interior system, rapid measuring system.

  • PDF

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

A Survey on Moving Target Indication Techniques for Small UAVs : Parametric Approach (소형 무인항공기용 이동표적 표시기법에 대한기술 동향 분석 : 매개변수방식)

  • Yun, Seung Gyu;Kang, Seung Eun;Ko, Sang Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.576-585
    • /
    • 2014
  • In this paper, we survey the Moving Target Indication(MTI) techniques for small UAVs. MTI consists of image alignment phase and frame differencing correction phase, and image alignment has two ways of parametric approach which is mainly focused in this paper and non-parametric approach. Since small UAVs are operated in the low altitude, the parallax is considerable and the epipolar geometry is applied to compensate the parallax. The related works and future works are presented.

A Head-Eye Calibration Technique Using Image Rectification (영상 교정을 이용한 헤드-아이 보정 기법)

  • Kim, Nak-Hyun;Kim, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.8
    • /
    • pp.11-23
    • /
    • 2000
  • Head-eye calibration is a process for estimating the unknown orientation and position of a camera with respect to a mobile platform, such as a robot wrist. We present a new head-eye calibration technique which can be applied for platforms with rather limited motion capability In particular, the proposed calibration technique can be applied to find the relative orientation of a camera mounted on a linear translation platform which does not have rotation capability. The algorithm find the rotation using a calibration data obtained from pure Translation of a camera along two different axes We have derived a calibration algorithm exploiting the rectification technique in such a way that the rectified images should satisfy the epipolar constraint. We present the calibration procedure for both the rotation and the translation components of a camera relative to the platform coordinates. The efficacy of the algorithm is demonstrated through simulations and real experiments.

  • PDF

A Euclidean Reconstruction of 3D Face Data Using a One-Shot Absolutely Coded Pattern (단일 투사 절대 코드 패턴을 이용한 3차원 얼굴 데이터의 유클리디안 복원)

  • Kim, Byoung-Woo;Yu, Sun-Jin;Lee, Sang-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.133-140
    • /
    • 2005
  • This paper presents a rapid face shape acquisition system. The system is composed of two cameras and one projector. The technique works by projecting a pattern on the object and capturing two images with two cameras. We use a 'one shot' system which provides 3D data acquired by single image per camera. The system is good for rapid data acquisition as our purpose. We use the 'absolutely coded pattern' using the hue and saturation of pattern lines. In this 'absolutely coded pattern' all patterns have absolute identification numbers. We solve the correspondence problem between the two images by using epipolar geometry and absolute identification numbers. In comparison to the 'relatively coded pattern' which uses relative identification numbers, the 'absolutely coded pattern' helps obtain rapid 3D data by one to one point matching on an epipolar line. Because we use two cameras, we obtain two images which have similar hue and saturation. This enables us to have the same absolute identification numbers in both images, and we can use the absolutely coded pattern for solving the correspondence problem. The proposed technique is applied to face data and the total time for shape acquisition is estimated.

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

High accuracy online 3D-reconstruction by multiple cameras

  • Oota, Yoshikazu;Pan, Yaodong;Furuta, Katuhisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1749-1752
    • /
    • 2005
  • For online high accurate reconstruction of an object from an visual information, a linear reconstruction method for multiple images is popular. Basically this method needs many cameras or many different screen shots from different view points. This method, however, has the benefit of less calculation and is adequate for a real time application by comparing other popular method. In this paper, online reconstruction system using more than three cameras is treated. An evaluation method of cameras' position, and of the number is derived for the linear reconstruction method. To decrease errors that are caused from skew of lens, positional error between corresponding points is taken into consideration on the evaluation. The proposed evaluation method enables estimation of the adequate number of cameras and then of feasible view locations. Additionally, repeating search of epipolar lines enables estimation of the hidden point. Comparing with result of an average error analysis, it was confirmed that the proposed methods works effectively.

  • PDF

Hard calibration of a structured light for the Euclidian reconstruction (3차원 복원을 위한 구조적 조명 보정방법)

  • 신동조;양성우;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF

3D SCENE EDITING BY RAY-SPACE PROCESSING

  • Lv, Lei;Yendo, Tomohiro;Tanimoto, Masayuki;Fujii, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.732-736
    • /
    • 2009
  • In this paper we focus on EPI (Epipolar-Plane Image), the horizontal cross section of Ray-Space, and we propose a novel method that chooses objects we want and edits scenes by using multi-view images. On the EPI acquired by camera arrays uniformly distributed along a line, all the objects are represented as straight lines, and the slope of straight lines are decided by the distance between objects and camera plane. Detecting a straight line of a specific slope and removing it mean that an object in a specific depth has been detected and removed. So we propose a scheme to make a layer of a specific slope compete with other layers instead of extracting layers sequentially from front to back. This enables an effective removal of obstacles, object manipulation and a clearer 3D scene with what we want to see will be made.

  • PDF

Color stereo image matching for self-calibration (셀프 캘리브레이션을 위한 컬러 스테레오 이미지의 대응 관계 추출)

  • Kim, Do-Yoon;Chung, Hyung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2528-2530
    • /
    • 2002
  • 본 연구에서는 캘리브레이션 박스와 같은 사전에 약속된 물체를 사용하지 않고 일반적인 환경(unstructured environment)의 컬러 스테레오 영상으로부터 특징점을 찾고, 특징점 사이의 대응관계를 사용자 개입 없이 파악하는 방법에 대해 소개한다. 또한 찾은 대응관계를 이용해 스테레오 카메라 사이의 에피폴라 기하학(epipolar geometry) 관계를 계산하여 셀프 캘리브레이션에 이용한다. 이와 유사한 연구는 많이 진행되어 왔으나 대부분의 연구가 흑백 영상에서 진행되어 왔다. 본 연구에서는 컬러 이미지의 속성을 이용해 흑백 영상을 이용할 때보다 외부 환경의 변화에 강인하며, 정밀한 대응 관계를 찾을 수 있음을 실험을 통해 보인다.

  • PDF