• Title/Summary/Keyword: Epilayer thickness

Search Result 26, Processing Time 0.022 seconds

Fabrication of AlGaN-based vertical light-emitting diodes

  • Bae, Seon Min;Jeon, Hunsoo;Lee, Gang Seok;Jung, Se-Gyo;Kim, Kyoung Hwa;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Cheon, Seong Hak;Ha, Hong-Ju;Sawaki, Nobuhiko
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.75-77
    • /
    • 2012
  • The AlGaN-based vertical light-emitting diodes (LEDs) on thick GaN epilayer were fabricated by a hydride vapor phase epitaxy with multi sliding boat system. The optical and electrical characteristics of AlGaN-based vertical LEDs were evaluated using a scanning electron microscopy, electroluminescence and I-V measurements. The AlGaN-based vertical LEDs structure has hexagonal symmetry, 500 ㎛ in diameter and above 67 ㎛ in growth thickness. At the room-temperature, the broaded strong peak and relatively high intensity peak were gradually measured at 405 nm with increasing injection current. And a forward operator voltage was measured to be about 7.5 V.

Growth and characterizations of INAlAs epilayers and InGaAs/INAlAs quantum well structures by low pressure metalorganic chemical vapor deposition (저압 유기금속 화학증착법을 이용한 InAIAs 에피층과 InGaAs/InAIAs 양자 우물 구조의 성장과 분석)

  • 유경란;문영부;이태완;윤의준
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.328-333
    • /
    • 1998
  • Lattice-matched InAIAs epilayers were grown on (001) InP substrate by low pressure metalorganic chemical vapor deposition. The effects of growth conditions on the properties of InAIAs were analyzed, and InGaAs/InAIAs single and multiple quantum wells were successfully grown. It was observed that the optical property of InAIAs epilayers was improved in the temperature range of 620~$700^{\circ}C$ as the growth temperature increased due to the reduction of oxygen incorporation, however, the crystallinity decreased at temperatures higher than $750^{\circ}C$ due to the degraded crystallinity of the bufter layers. The enhanced incorporation of AI into epilayer was observed at high $AsH_3$flow rates and it was explained in terms of the differences in bond strengths of AI-As and In-As. The measured photoluminescence peak energies from InGaAs/InAIAs single quantum wells were consistent with the calculated ones based on transfer matrix method. High-order satellite peaks and fine thickness fringes were observed by high-resolution x-ray diffraction, implying that the high-quality multiple quantum wells with abrupt heterointerfaces were grown.

  • PDF

Growth of $CdGa_2Se_4$ epilayer using hot wall epitaxy method and their photoconductive characteristics (HWE에 의한 $CdGa_2Se_4$ 박막 성장과 광전도 특성)

  • 홍광준;이관교;이상열;유상하;신용진;서상석;정준우;정경아;신영진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.366-376
    • /
    • 1997
  • $CdGa_2Se_4$, epilayer of tetragonal type are grown on Si(100) substrate by hot wall epitaxy method. The source and substrate temperature is $580^{\circ}C$ and $420^{\circ}C$ respectively, and the thickness of the film is 3 $\mu \textrm{m}$. The crystallihe structure of epilayers were investigated by double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 200 K and by polar optical scattering in the temperature range 200 K to 293 K. In order to explore of photocurrent to darkcurrent (pc/dc), maximum allowable power dissipation (MAPD), spectral response and response time. The results indicated that for the samples annealed in Se vapor the photoconductive characteristics are best. Then we obtained the sensitivity of 0.98, the value of pc/dc of $9.62{\times}10^6$, the MAPD of 321 ㎽ and the rise and decay time of 9 ㎳ and 9.5 ㎳, respectively.

  • PDF

Analytical Models for Breakdown Voltage and Specific On-Resistance of 4H-SiC Schottky Diodes (4H-SiC 쇼트키 다이오드의 해석적 항복전압과 온-저항 모델)

  • Chung, Yong-Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.22-27
    • /
    • 2008
  • Analytical models for breakdown voltage and specific on-resistance of 4H-silicon carbide Schottky diodes have been derived successfully by extracting an effective ionization coefficient $\gamma$ from ionization coefficients $\alpha$ and $\beta$ for electron and hole in 4H-SiC. The breakdown voltages extracted from our analytical model are compared with experimental results. The specific on-resistance as a function of doping concentration is also compared with the ones reported previously. Good fits with the experimental results are found for the breakdown voltage within 10% in error for the doping concentration in the range of about $10^{15}{\sim}10^{18}\;cm^{-3}$. The analytical results show good agreement with the experimental data for the specific on-resistance in the range of $3{\times}10^{15}{\sim}2{\times}10^{16}\;cm^{-3}$.

A Study on the Formation fo Epitaxial $CoSi_2$ Thin Film using Co/Ti Bilayer (Co/Ti이중박막을 이용한 $CoSi_2$에피박막형성에 관한 연구)

  • Kim, Jong-Ryeol;Bae, Gyu-Sik;Park, Yun-Baek;Jo, Yun-Seong
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.81-89
    • /
    • 1994
  • Ti film of lOnm thickness and Co film of 18nm thickness were sequentially e-heam evaporated onto Si (100) substrates. Metal deposited samples were rapidly thermal-annt.aled(KTA) in thr N1 en vironment a t $900^{\circ}C$ for 20 sec. to induce the reversal of metal bilayer, so that $CoSi_{2}$ thin films could be formed. The sheet resistance measured by the 4-point probe was 3.9 $\Omega /\square$This valur was maintained with increase in annealing time upto 150 seconds, showing high thermal stab~lity. Thc XRII spectra idrn tified the silicide film formed on the Si substrate as a $CoSi_{2}$ epitaxial layer. The SKM microgr;iphs showed smooth surface, and the cross-sectional TKM pictures revealed that the layer formed on the Si substrate were composed of two Co-Ti-Si alloy layers and 70nm thick $CoSi_{2}$ epl-layer. The AES analysis indicated that the native oxide on Si subs~rate was removed by TI ar the beginning of the RTA, and Ihcn that Co diffused to clean surface of Si substrate so that epitaxial $CoSi_{2}$ film could bt, formed. In thc rasp of KTA at $700^{\circ}C$. 20sec. followed by $900^{\circ}C$, 20sec., the thin film showed lower sheet resistance, but rough surface and interface owing to $CoSi_{2}$ crystal growth. The application scheme of this $CoSi_{2}$ epilayer to VLSI devices and the thermodynarnic/kinetic mechan~sms of the $CoSi_{2}$ epi-layer formation through the reversal of Co/Ti bdayer were discussed.

  • PDF

Enhancement of light extraction efficiency in vertical light-emitting diodes with MgO nano-pyramids structure

  • Son, Jun-Ho;Yu, Hak-Ki;Lee, Jong-Lam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.16-16
    • /
    • 2010
  • GaN-based light-emitting diodes (LEDs) are attracting great interest as candidates for next-generation solid-state lighting, because of their long lifetime, small size, high efficacy, and low energy consumption. However, for general illumination applications, the external quantum efficiency of LEDs, determined by the internal quantum efficiency (IQE) and the light extraction efficiency, must be further increased. The IQE is determined by crystal quality and epitaxial layer structure and high value of IQE more than 70% for blue LEDs have been already reported. However, there is much room for improvement of light extraction efficiency because most of the generated photons from active layer remain inside LEDs by total internal reflection at the interface of semiconductor with air due to the high refractive index difference between LEDs epilayer (for GaN, n=2.5) and air (n=1). The light confining in LEDs will be reabsorbed by the metal electrode or active layer, reducing the efficacy of LEDs. Here, we present the first demonstration of enhanced light extraction by forming a MgO nano-pyramids structure on the surface of vertical-LEDs. The MgO nano-pyramids structure was successfully fabricated at room temperature using conventional electron-beam evaporation without any additional process. The nano-sized pyramids of MgO are formed on the surface during growth due to anisotropic characteristics between (111) and (200) plane of MgO. The ZnO layer with quarter-wavelength in thickness is inserted between GaN and MgO layers to increase the critical angle for total internal reflection, because the refractive index of ZnO (n=1.94) could be matched between GaN (n=2.5) and MgO (n=1.73). The MgO nano-pyramids structure and ZnO refractive-index modulation layer enhanced the light extraction efficiency ofV-LEDs with by 49%, comparing with the V-LEDs with a flat n-GaN surface. The angular-dependent emission intensity shows the enhanced light extraction through the side walls of V-LEDs as well as through the top surface of the n-GaN, because of the increase in critical angle for total internal reflection as well as light scattering at the MgO nano-pyramids surface.

  • PDF