Analytical Models for Breakdown Voltage and Specific On-Resistance of 4H-SiC Schottky Diodes

4H-SiC 쇼트키 다이오드의 해석적 항복전압과 온-저항 모델

  • 정용성 (서라벌대학 팬시완구디자인과)
  • Published : 2008.06.25

Abstract

Analytical models for breakdown voltage and specific on-resistance of 4H-silicon carbide Schottky diodes have been derived successfully by extracting an effective ionization coefficient $\gamma$ from ionization coefficients $\alpha$ and $\beta$ for electron and hole in 4H-SiC. The breakdown voltages extracted from our analytical model are compared with experimental results. The specific on-resistance as a function of doping concentration is also compared with the ones reported previously. Good fits with the experimental results are found for the breakdown voltage within 10% in error for the doping concentration in the range of about $10^{15}{\sim}10^{18}\;cm^{-3}$. The analytical results show good agreement with the experimental data for the specific on-resistance in the range of $3{\times}10^{15}{\sim}2{\times}10^{16}\;cm^{-3}$.

4H-SiC의 전자와 정공의 이온화계수 $\alpha$$\beta$로부터 유효이온화계수 $\gamma$를 추출함으로써 4H-SiC 쇼트키 다이오드의 항복전압과 온-저항을 위한 해석적 모델을 유도하였다. 해석적 모델로부터 구한 항복전압을 실험 결과와 비교하였고, 도핑 농도 함수의 온-저항도 이미 발표된 결과와 비교하였다. 항복전압은 $10^{15}{\sim}10^{18}\;cm^{-3}$의 도핑 농도 범위에서 실험 결과와 10% 이내의 오차로 잘 일치하였다. 온-저항을 위한 해석적 결과는 $3{\times}10^{15}{\sim}2{\times}10^{16}\;cm^{-3}$의 범위에서 실험 결과와 매우 잘 일치하였다.

Keywords

References

  1. M. Ruff, H. Mitlehner, and R. Helbig, "SiC device: Physics and numerical simulation," IEEE Trans. on Electron Devices, vol. 41, no. 6, pp. 1040-1054, 1040-1054 https://doi.org/10.1109/16.293319
  2. W. J. Schaffer, G. H. Negley, K. G. Irvine, and J. W. Palmour, "Conductivity anisotropy in epitaxial 6H and 4H SiC," in Mater. Res. Soc. Symp. Proc., 1994, vol. 339, pp. 595
  3. J. W. Palmour and L. A. Lipkin, "High temperature power devices in silicon carbide," in Trans. 2nd High Temp. Elec. Conf., Charlotte, NC, 1994, p. XI-3
  4. A. Itoh, H. Akita, T. Kimoto, and H. Matsunami, "High-quality 4H-SiC homoepitaxial layers grown by step-controlled epitaxy," Appl. Phys. Lett., vol. 65, pp. 1400-1402, 1994 https://doi.org/10.1063/1.112064
  5. R. Raghunathan, D. Alok, and B. J. Baliga, "High voltage 4H-SiC Schottky barrier diodes," IEEE Electron Device Letters, vol. 16, pp. 226-227, 1995 https://doi.org/10.1109/55.790716
  6. K. J. Schoen, J. M. Woodall, J. A. Cooper, Jr., and M. R. Melloch, "Design consideration and experimental analysis of high-voltage SiC Schottky barrier rectifier," IEEE Trans. on Electron Devices, vol. 45, pp. 1595-1604, 1998 https://doi.org/10.1109/16.701494
  7. D. Alok, B. J. Baliga, and P. K. McLarty, "A simple edge termination for silicon carbide devices with nearly ideal breakdown voltage," IEEE Electron Device Letters, vol. 13, no. 10, pp. 501-503, 1992 https://doi.org/10.1109/55.192814
  8. V. Saxena, J. N. Su, A. J. Steckl, "High-voltage Ni- and Pt-SiC Schottky diodes utilizing metal field plate termination," IEEE Trans. on Electron Devices, vol. 46, no. 3, pp. 456-464, 1999 https://doi.org/10.1109/16.748862
  9. H. Matsunami, "Progress of semiconductor silicon carbide (SiC)," Electronics and Communications in Japan, Part 2, vol. 81, no. 7, pp. 38-44, 1998 https://doi.org/10.1002/(SICI)1520-6424(199807)81:7<38::AID-ECJA5>3.0.CO;2-0
  10. H. Matsunami and A. Itoh, "Semiconductor silicon carbide for power electronic application," Ext. Abst. 1995 Int. Conf. Solid State Devices and Materials (SSDM '95), Osaka Business Center for Academic Societies, Japan, Tokyo, 1995
  11. D. Alok, R. Raghunathan, and B. J. Baliga, "Planar edge termination for 4H-silicon carbide device," IEEE Trans. on Electron Devices, vol. 43, no. 8, pp. 1315-1317, 1996 https://doi.org/10.1109/16.506789
  12. R. Raghunathan and B. J. Baliga, "P-type 4H and 6H-SiC high-voltage Schottky barrier diodes," IEEE Electron Device Letters, vol. 19, no. 3, pp. 71-73, 1998 https://doi.org/10.1109/55.661168
  13. J. Wang and B. W. Williams, "Evaluation of high-voltage 4H-SiC switching devices," IEEE Trans. on Electron Devices, vol. 46, no. 3, pp. 589-597, 1999 https://doi.org/10.1109/16.748883
  14. C. V. Opdorp and J. Vrakking, "Avalanche breakdown voltage in epitaxial SiC p-n junction," Journal of Applied Physics, vol. 40, no. 5, pp. 2320-2322, 1969 https://doi.org/10.1063/1.1657980
  15. M. Bhatnagar, P. K. McLarty, and B. J. Baliga, "Silicon-carbide high-voltage (400V) Schottky barrier diodes," IEEE Electron Device Letters, vol. 13, no. 10, pp. 501-503, 1992 https://doi.org/10.1109/55.192814
  16. T. Kimoto, T. Urushidani, S. Kobayashi, and H. Matsunami, "High-voltage (>1kV) SiC Schottky barrier diodes with low on-resistance," IEEE Electron Device Lett., vol. 14, no. 12, pp. 548-550, 1993 https://doi.org/10.1109/55.260785
  17. O. Kodina, J. P. Bergman, A. Henry, E. Janzén, S. Savage, J. André, L. P. Ramberg, U. Lindefelt, W. Hermansson, and K. Bergman, "A 4.5 kV 6H silicon carbide rectifier," Appl. Phys. Lett., vol. 67(11), no. 9, pp. 1561-1563, 1995 https://doi.org/10.1063/1.114734
  18. L. G. Matus, J. A. Powell and C. S. Salupo, "High-voltage 6H-SiC p-n junction diodes," Appl. Phys. Lett., vol. 59(14), no. 9, pp. 1770-1772, 1991 https://doi.org/10.1063/1.106195
  19. G. H. Glover, "Charge multiplication in Au-SiC(6H) Schottky junctions," J. Appl. Phys., vol. 46, no.11, pp. 4842-4844, 1975 https://doi.org/10.1063/1.321514
  20. J. W. Palmour, Cree Research, Triangle Park, NC, private communication
  21. C. E. Weitzel, J. W. Palmour, C. H. Carter, Jr., K. Moore, K. J. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, "Silicon carbide high-power devices," IEEE Trans. on Electron Devices, vol. 43, no. 10, pp. 1732-1741, 1996 https://doi.org/10.1109/16.536819
  22. B. J. Baliga, Power Semiconductor Devices. Boston, MA: PWS, 1996