• 제목/요약/키워드: Epigenetic Modifications

검색결과 72건 처리시간 0.026초

Functions of TET Proteins in Hematopoietic Transformation

  • Han, Jae-A;An, Jungeun;Ko, Myunggon
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.925-935
    • /
    • 2015
  • DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

Gestational Exposure to Bisphenol A Causes DNA Hypomethylation and the Upregulation of Progesterone Receptor Expression in the Uterus in Adult Female Offspring Rats

  • Seung Gee Lee;Ji-Eun Park;Yong-Pil Cheon;Jong-Min Kim
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.195-203
    • /
    • 2023
  • Exposure to environmental chemicals, including endocrine-disrupting chemicals, during the gestational period can have profound adverse effects on several organs in offspring. Bisphenol A (BPA) can infiltrate the human body through food and drinks, and its metabolites can cross both the placental and the blood-brain barriers. In this study, we investigate the effect of gestational exposure to BPA on epigenetic, biochemical, and histological modifications in the uterine tissues of F1 adult offspring rats. Pregnant rats were exposed to BPA from gestational day 8-15, and changes in global DNA methylation in uterine tissues obtained from adult offspring born to the exposed mothers were analyzed. Global DNA methylation analysis revealed that gestational exposure to BPA resulted in DNA hypomethylation in the uterus. Progesterone receptor (PR) protein expression in uterine tissues was monitored using western blot analysis, which revealed that the PR protein content was considerably higher in all BPA-exposed groups than in the control. Immunohistochemical examination for the PR revealed that intense PR-positive cells were more frequently observed in the BPA-exposed group than in the control group. To date, the evidence that the upregulation of PRs observed in the present study was caused by the non-methylation of specific PR promoter regions is lacking. Conclusively, these results indicate that exposure to BPA during gestation induces epigenetic alterations in the uteri of adult female offspring. We speculate that the global DNA hypomethylation and upregulation of the PR observed simultaneously in this study might be associated with the uterus.

Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation

  • Ullah, Imran;Lee, Ran;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Hur, Tai-Young;Ock, Sun A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1837-1847
    • /
    • 2020
  • Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.

Alterations in Acetylation of Histone H4 Lysine 8 and Trimethylation of Lysine 20 Associated with Lytic Gene Promoters during Kaposi's Sarcoma-Associated Herpesvirus Reactivation

  • Lim, Sora;Cha, Seho;Jang, Jun Hyeong;Yang, Dahye;Choe, Joonho;Seo, Taegun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.189-196
    • /
    • 2017
  • Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with formation of Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Replication and transcription activator (RTA) genes are expressed upon reactivation of KSHV, which displays a biphasic life cycle consisting of latent and lytic replication phases. RTA protein expression results in KSHV genome amplification and successive viral lytic gene expression. Transcriptional activity of viral lytic genes is regulated through epigenetic modifications. In Raji cells latently infected with Epstein-Barr virus, various modifications, such as acetylation and methylation, have been identified at specific lysine residues in histone H4 during viral reactivation, supporting the theory that expression of specific lytic genes is controlled by histone modification processes. Data obtained from chromatin immunoprecipitation and quantitative real-time PCR analyses revealed alterations in the H4K8ac and H4K20me3 levels at lytic gene promoters during reactivation. Our results indicate that H4K20me3 is associated with the maintenance of latency, while H4K8ac contributes to KSHV reactivation in infected TREx BCBL-1 RTA cells.

Imprinted gene Zinc finger protein 127 is a novel regulator of master pluripotency transcription factor, Oct4

  • Kwon, Yoo-Wook;Ahn, Hyo-Suk;Park, Joo-Young;Yang, Han-Mo;Cho, Hyun-Jai;Kim, Hyo-Soo
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.242-248
    • /
    • 2018
  • Induced pluripotent stem cells (iPSCs) show great promise for replacing current stem cell therapies in the field of regenerative medicine. However, the original method for cellular reprogramming, involving four exogenous transcription factors, is characterized by low efficiency. Here, we focused on using epigenetic modifications to enhance the reprogramming efficiency. We hypothesized that there would be a new reprogramming factor involved in DNA demethylation, acting on the promoters of pluripotency-related genes. We screened proteins that bind to the methylated promoter of Oct4 and identified Zinc finger protein 127 (Zfp127), the functions of which have not yet been identified. We found that Zfp127 binds to the Oct4 promoter. Overexpression of Zfp127 in fibroblasts induced demethylation of the Oct4 promoter, thus enhancing Oct4 promoter activity and gene expression. These results demonstrate that Zfp127 is a novel regulator of Oct4, and may become a potent target to improve cellular reprogramming.

Rice plants regenerated under saline conditions displayed salt tolerance and stress memory

  • Cho, Hyun Min;Chun, Hyun Jin;Kim, Min Chul
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.152-152
    • /
    • 2017
  • Plants exposed to environmental stress for long durations often can adapt to stress conditions with improved tolerance. Moreover this acquired tolerance to stress can be retained even after reverting to destressed growth conditions, which is known to stress memory. In these adaptation and stress memory processes, epigenetic regulation, such as DNA methylation and histone modifications play a key role. Here, we showed that regenerated rice plants from embryogenic callus exposed to gradually increasing NaCl concentrations (up to 120 mM NaCl) acquired salt tolerance and their enhanced tolerance are inherited to subsequent generations. The rice plants (R0) regenerated from rice callus under saline conditions were transplanted into normal paddy field and R1 seeds were harvested. These R1 seeds displayed higher germination rate on MS medium containing 100mM NaCl than wild-type. The callus derived from R1 seeds showed better growth than control callus on high salinity medium. And the salt-adapted R1 plants exhibited higher chlorophyll contents and also higher $K^+/Na^+$ ratio than wild-type rice under saline conditions. The results indicated that rice plants successfully adapted to saline growth conditions during regeneration on high salt medium and moreover this acquired tolerance to salt stress was inherited subsequent generation.

  • PDF

Human Endogenous Retroviruses as Gene Expression Regulators: Insights from Animal Models into Human Diseases

  • Durnaoglu, Serpen;Lee, Sun-Kyung;Ahnn, Joohong
    • Molecules and Cells
    • /
    • 제44권12호
    • /
    • pp.861-878
    • /
    • 2021
  • The human genome contains many retroviral elements called human endogenous retroviruses (HERVs), resulting from the integration of retroviruses throughout evolution. HERVs once were considered inactive junk because they are not replication-competent, primarily localized in the heterochromatin, and silenced by methylation. But HERVs are now clearly shown to actively regulate gene expression in various physiological and pathological conditions such as developmental processes, immune regulation, cancers, autoimmune diseases, and neurological disorders. Recent studies report that HERVs are activated in patients suffering from coronavirus disease 2019 (COVID-19), the current pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. In this review, we describe internal and external factors that influence HERV activities. We also present evidence showing the gene regulatory activity of HERV LTRs (long terminal repeats) in model organisms such as mice, rats, zebrafish, and invertebrate models of worms and flies. Finally, we discuss several molecular and cellular pathways involving various transcription factors and receptors, through which HERVs affect downstream cellular and physiological events such as epigenetic modifications, calcium influx, protein phosphorylation, and cytokine release. Understanding how HERVs participate in various physiological and pathological processes will help develop a strategy to generate effective therapeutic approaches targeting HERVs.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

난소 절제 쥐의 골격근에서 갈근 및 지황 섭취와 운동이 후성 유전적 변화에 미치는 영향 (The Effects of Pueraria and Rehmannia Glutinosa Intake and Exercise on Epigenetic Modification in Ovariectomized Rat Skeletal Muscle)

  • 정현지;김혜진;권오란;이원준
    • 생명과학회지
    • /
    • 제25권11호
    • /
    • pp.1214-1222
    • /
    • 2015
  • 본 연구는 난소 제거 수술을 시행하여 폐경기를 유도시킨 뒤 고지방 식이를 섭취한 쥐에게서 나타난 신체 변화에 있어 운동과 갈근/지황 섭취에 의한 개선 효과를 관찰하고, 그러한 효과가 골격근에서의 후성 유전적 발현 변화에 의한 것임을 규명하고자 하였다. 8주령의 쥐(rat, n=60)의 난소를 제거한 뒤 고지방 식이를 유도하면서 트레드밀 운동(exercise)을 실시하는 그룹과 비운동(sedentary) 그룹으로 나누었다. 두 그룹을 각각 estradiol, 갈근과 지황의 3:1 복합물(HT051), 그리고 물 섭취 군으로 다시 나누어 총 8주간 경구 투여를 함께 실시하였다. 그 결과 운동 그룹과 갈근/지황 섭취 그룹에서 체중이 유의하게 감소하였고, 가자미근과 족저근의 근질량 또한 운동 그룹과 갈근/지황 섭취 그룹에서 유의하게 증가하였다. 한편, 가자미근에서 물을 섭취하며 운동하지 않은 그룹의 H3K9 아세틸화가 억제 되었고 H3K9의 메틸화에는 변화가 없었다. 족저근의 경우 운동 그룹에서 H3K9 아세틸화가 현저하게 눈에 띄었고, 반대로 메틸화는 줄어든 것이 관찰되었다. 나아가 H3K9의 아세틸화와 메틸화를 조절하는 대표적인 효소 중 HDAC4, HDAC5, G9a 유전자의 mRNA 발현양을 정량한 결과, 가자미근에서는 모두 유의한 차이가 없었고 족저근에서 운동 한 그룹의 HDAC5와 G9a 유전자의 mRNA 발현양이 유의하게 감소하였지만 HDAC4의 mRNA는 차이가 없었다. 또한 운동과 갈근/지황의 상호작용 효과는 나타나지 않았다. 본 연구를 통하여 운동과 갈근/지황 섭취가 체중 감소, 근질량 증가에 영향을 미치고, 이러한 현상은 히스톤 H3K9 부분의 아세틸화와 메틸화에 의한 유전자 발현 조절이 그 기전으로 작용한다는 것을 알 수 있었다.