DOI QR코드

DOI QR Code

Functions of TET Proteins in Hematopoietic Transformation

  • Han, Jae-A (School of Life Sciences, Ulsan National Institute of Science and Technology) ;
  • An, Jungeun (Center for Genomic Integrity, Institute for Basic Science (IBS)) ;
  • Ko, Myunggon (School of Life Sciences, Ulsan National Institute of Science and Technology)
  • Received : 2015.10.23
  • Accepted : 2015.11.04
  • Published : 2015.11.30

Abstract

DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.

Keywords

References

  1. Abbas, S., Lugthart, S., Kavelaars, F.G., Schelen, A., Koenders, J.E., Zeilemaker, A., van Putten, W.J., Rijneveld, A.W., Lowenberg, B., and Valk, P.J. (2010). Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116, 2122-2126. https://doi.org/10.1182/blood-2009-11-250878
  2. Abdel-Wahab, O., Gao, J., Adli, M., Dey, A., Trimarchi, T., Chung, Y.R., Kuscu, C., Hricik, T., Ndiaye-Lobry, D., Lafave, L.M., et al. (2013). Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J. Exp. Med. 210, 2641-2659. https://doi.org/10.1084/jem.20131141
  3. Arioka, Y., Watanabe, A., Saito, K., and Yamada, Y. (2012). Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins. PLos One 7, e45031. https://doi.org/10.1371/journal.pone.0045031
  4. Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y., and Shirakawa, M. (2008). Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455, 818-821. https://doi.org/10.1038/nature07249
  5. Avvakumov, G.V., Walker, J.R., Xue, S., Li, Y.J., Duan, S.L., Bronner, C., Arrowsmith, C.H., and Dhe-Paganon, S. (2008). Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455, 822-825. https://doi.org/10.1038/nature07273
  6. Bachman, M., Uribe-Lewis, S., Yang, X.P., Williams, M., Murrell, A., and Balasubramanian, S. (2014). 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 6, 1049-1055. https://doi.org/10.1038/nchem.2064
  7. Bachman, M., Uribe-Lewis, S., Yang, X.P., Burgess, H.E., Iurlaro, M., Reik, W., Murrell, A., and Balasubramanian, S. (2015). 5-Formylcytosine can be a stable DNA modification in mammals. Nat. Chem. Biol. 11, 555-557. https://doi.org/10.1038/nchembio.1848
  8. Blaschke, K., Ebata, K.T., Karimi, M.M., Zepeda-Martinez, J.A., Goyal, P., Mahapatra, S., Tam, A., Laird, D.J., Hirst, M., Rao, A., et al. (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222-226. https://doi.org/10.1038/nature12362
  9. Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760-1764. https://doi.org/10.1126/science.1147939
  10. Busque, L., Patel, J.P., Figueroa, M.E., Vasanthakumar, A., Provost, S., Hamilou, Z., Mollica, L., Li, J., Viale, A., Heguy, A., et al. (2012). Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179-1181. https://doi.org/10.1038/ng.2413
  11. Cairns, R.A., Iqbal, J., Lemonnier, F., Kucuk, C., de Leval, L., Jais, J.P., Parrens, M., Martin, A., Xerri, L., Brousset, P., et al. (2012). IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119, 1901-1903. https://doi.org/10.1182/blood-2011-11-391748
  12. Challen, G.A., Sun, D.Q., Jeong, M., Luo, M., Jelinek, J., Berg, J.S., Bock, C., Vasanthakumar, A., Gu, H.C., Xi, Y.X., et al. (2012). Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23-31. https://doi.org/10.1038/ng.1009
  13. Chang, Y.I., Damnernsawad, A., Allen, L.K., Yang, D., Ranheim, E.A., Young, K.H., Zhang, J.F., Kong, G.Y., Wang, J.Y., Liu, Y.G., et al. (2014). Evaluation of allelic strength of human TET2 mutations and cooperation between Tet2 knockdown and oncogenic Nras mutation. Br. J. Haematol. 166, 461-465. https://doi.org/10.1111/bjh.12871
  14. Chen, C.C., Wang, K.Y., and Shen, C.K. (2012). The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J. Biol. Chem. 287, 33116-33121. https://doi.org/10.1074/jbc.C112.406975
  15. Cheng, J.J., Guo, S.Q., Chen, S.N., Mastriano, S.J., Liu, C.C., D'Alessio, A.C., Hysolli, E., Guo, Y.W., Yao, H., Megyola, C.M., et al. (2013). An extensive network of TET2-targeting microRNAs regulates malignant hematopoiesis. Cell Rep. 5, 471-481. https://doi.org/10.1016/j.celrep.2013.08.050
  16. Chim, C.S., Wan, T.S., Fung, T.K., and Wong, K.F. (2010). Methylation of TET2, CBL and CEBPA in Ph-negative myeloproliferative neoplasms. J. Clin. Pathol. 63, 942-946. https://doi.org/10.1136/jcp.2010.080218
  17. Cimmino, L., Dawlaty, M.M., Ndiaye-Lobry, D., Yap, Y.S., Bakogianni, S., Yu, Y., Bhattacharyya, S., Shaknovich, R., Geng, H., Lobry, C., et al. (2015). TET1 is a tumor suppressor of hematopoietic malignancy. Nat. Immunol. 16, 653-662. https://doi.org/10.1038/ni.3148
  18. Couronne, L., Bastard, C., and Bernard, O.A. (2012). TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl. J. Med. 366, 95-96. https://doi.org/10.1056/NEJMc1111708
  19. Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739-744. https://doi.org/10.1038/nature08617
  20. De Vita, S., Schneider, R.K., Garcia, M., Wood, J., Gavillet, M., Ebert, B.L., Gerbaulet, A., Roers, A., Levine, R.L., Mullally, A., et al. (2014). Loss of function of TET2 cooperates with constitutively active KIT in murine and human models of mastocytosis. PLoS One 9, e96209. https://doi.org/10.1371/journal.pone.0096209
  21. Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Masse, A., Kosmider, O., Le Couedic, J.P., Robert, F., Alberdi, A., et al. (2009). Mutation in TET2 in myeloid cancers. N Engl. J. Med. 360, 2289-2301. https://doi.org/10.1056/NEJMoa0810069
  22. Figueroa, M.E., Abdel-Wahab, O., Lu, C., Ward, P.S., Patel, J., Shih, A., Li, Y., Bhagwat, N., Vasanthakumar, A., Fernandez, H.F., et al. (2010). Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553-567. https://doi.org/10.1016/j.ccr.2010.11.015
  23. Fu, X.H., Jin, L., Wang, X.C., Luo, A., Hu, J.K., Zheng, X.W., Tsark, W.M., Riggs, A.D., Ku, H.T., and Huang, W.D. (2013). MicroRNA- 26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Proc. Natl. Acad. Sci. USA 110, 17892-17897. https://doi.org/10.1073/pnas.1317397110
  24. Gelsi-Boyer, V., Trouplin, V., Roquain, J., Adelaide, J., Carbuccia, N., Esterni, B., Finetti, P., Murati, A., Arnoulet, C., Zerazhi, H., et al. (2010). ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br. J. Haematol. 151, 365-375. https://doi.org/10.1111/j.1365-2141.2010.08381.x
  25. Gross, S., Cairns, R.A., Minden, M.D., Driggers, E.M., Bittinger, M.A., Jang, H.G., Sasaki, M., Jin, S.F., Schenkein, D.P., Su, S.S.M., et al. (2010). Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med. 207, 339-344. https://doi.org/10.1084/jem.20092506
  26. Guo, J.U., Su, Y.J., Zhong, C., Ming, G.L., and Song, H.J. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423-434. https://doi.org/10.1016/j.cell.2011.03.022
  27. Haferlach, T., Nagata, Y., Grossmann, V., Okuno, Y., Bacher, U., Nagae, G., Schnittger, S., Sanada, M., Kon, A., Alpermann, T., et al. (2014). Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241-247. https://doi.org/10.1038/leu.2013.336
  28. Hanssens, K., Brenet, F., Agopian, J., Georgin-Lavialle, S., Damaj, G., Cabaret, L., Chandesris, M.O., de Sepulveda, P., Hermine, O., Dubreuil, P., et al. (2014). SRSF2-p95 hotspot mutation is highly associated with advanced forms of mastocytosis and mutations in epigenetic regulator genes. Haematologica 99, 830-835. https://doi.org/10.3324/haematol.2013.095133
  29. Hashimoto, H., Horton, J.R., Zhang, X., Bostick, M., Jacobsen, S.E., and Cheng, X.D. (2008). The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455, 826-829. https://doi.org/10.1038/nature07280
  30. Hashimoto, H., Liu, Y., Upadhyay, A.K., Chang, Y., Howerton, S.B., Vertino, P.M., Zhang, X., and Cheng, X. (2012). Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841-4849. https://doi.org/10.1093/nar/gks155
  31. Hashimoto, H., Zhang, X., and Cheng, X.D. (2013). Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant. J. Mol. Biol. 425, 971-976. https://doi.org/10.1016/j.jmb.2013.01.013
  32. Hashimoto, H., Olanrewaju, Y.O., Zheng, Y., Wilson, G.G., Zhang, X., and Cheng, X.D. (2014). Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 28, 2304-2313. https://doi.org/10.1101/gad.250746.114
  33. He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303-1307. https://doi.org/10.1126/science.1210944
  34. Hino, S., Kishida, S., Michiue, T., Fukui, A., Sakamoto, I., Takada, S., Asashima, M., and Kikuchi, A. (2001). Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol. Cell Biol. 21, 330-342. https://doi.org/10.1128/MCB.21.1.330-342.2001
  35. Hon, G.C., Song, C.X., Du, T.T., Jin, F.L., Selvaraj, S., Lee, A.Y., Yen, C.A., Ye, Z., Mao, S.Q., Wang, B.A., et al. (2014). 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286-297. https://doi.org/10.1016/j.molcel.2014.08.026
  36. Hu, L.L., Li, Z., Cheng, J.D., Rao, Q.H., Gong, W., Liu, M.J., Shi, Y.J.G., Zhu, J.Y., Wang, P., and Xu, Y.H. (2013). Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545-1555. https://doi.org/10.1016/j.cell.2013.11.020
  37. Huang, Y., and Rao, A. (2014). Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet. 30, 464-474. https://doi.org/10.1016/j.tig.2014.07.005
  38. Huang, Y., Pastor, W.A., Shen, Y.H., Tahiliani, M., Liu, D.R., and Rao, A. (2010). The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLos One 5, e8888. https://doi.org/10.1371/journal.pone.0008888
  39. Huang, H., Jiang, X., Li, Z., Li, Y., Song, C.X., He, C., Sun, M., Chen, P., Gurbuxani, S., Wang, J., et al. (2013). TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc. Natl. Acad. Sci. USA 110, 11994-11999. https://doi.org/10.1073/pnas.1310656110
  40. Huang, Y., Chavez, L., Chang, X., Wang, X., Pastor, W.A., Kang, J., Zepeda-Martinez, J.A., Pape, U.J., Jacobsen, S.E., Peters, B., et al. (2014). Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 111, 1361-1366. https://doi.org/10.1073/pnas.1322921111
  41. Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303. https://doi.org/10.1126/science.1210597
  42. Itzykson, R., Kosmider, O., Renneville, A., Morabito, M., Preudhomme, C., Berthon, C., Ades, L., Fenaux, P., Platzbecker, U., Gagey, O., et al. (2013). Clonal architecture of chronic myelomonocytic leukemias. Blood 121, 2186-2198. https://doi.org/10.1182/blood-2012-06-440347
  43. Iurlaro, M., Ficz, G., Oxley, D., Raiber, E.A., Bachman, M., Booth, M.J., Andrews, S., Balasubramanian, S., and Reik, W. (2013). A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119. https://doi.org/10.1186/gb-2013-14-10-r119
  44. Iyer, L.M., Tahiliani, M., Rao, A., and Aravind, L. (2009). Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8, 1698-1710. https://doi.org/10.4161/cc.8.11.8580
  45. Iyer, L.M., Abhiman, S., and Aravind, L. (2011). Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 101, 25-104. https://doi.org/10.1016/B978-0-12-387685-0.00002-0
  46. Kats, L.M., Reschke, M., Taulli, R., Pozdnyakova, O., Burgess, K., Bhargava, P., Straley, K., Karnik, R., Meissner, A., Small, D., et al. (2014). Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14, 329-341. https://doi.org/10.1016/j.stem.2013.12.016
  47. Kellinger, M.W., Song, C.X., Chong, J., Lu, X.Y., He, C., and Wang, D. (2012). 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 19, 831-833. https://doi.org/10.1038/nsmb.2346
  48. Kim, Y.H., Pierscianek, D., Mittelbronn, M., Vital, A., Mariani, L., Hasselblatt, M., and Ohgaki, H. (2011). TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J. Clin. Pathol. 64, 850-852. https://doi.org/10.1136/jclinpath-2011-200133
  49. Ko, M., Huang, Y., Jankowska, A.M., Pape, U.J., Tahiliani, M., Bandukwala, H.S., An, J., Lamperti, E.D., Koh, K.P., Ganetzky, R., et al. (2010). Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839-843. https://doi.org/10.1038/nature09586
  50. Ko, M., Bandukwala, H.S., An, J., Lamperti, E.D., Thompson, E.C., Hastie, R., Tsangaratou, A., Rajewsky, K., Koralov, S.B., and Rao, A. (2011). Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. USA 108, 14566-14571. https://doi.org/10.1073/pnas.1112317108
  51. Ko, M., An, J., Bandukwala, H.S., Chavez, L., Aijo, T., Pastor, W.A., Segal, M.F., Li, H.M., Koh, K.P., Lahdesmaki, H., et al. (2013). Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497, 122-126. https://doi.org/10.1038/nature12052
  52. Ko, M., An, J., Pastor, W.A., Koralov, S.B., Rajewsky, K., and Rao, A. (2015). TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol. Rev. 263, 6-21. https://doi.org/10.1111/imr.12239
  53. Kojima, T., Shimazui, T., Hinotsu, S., Joraku, A., Oikawa, T., Kawai, K., Horie, R., Suzuki, H., Nagashima, R., Yoshikawa, K., et al. (2009). Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene 28, 297-305. https://doi.org/10.1038/onc.2008.391
  54. Konstandin, N., Bultmann, S., Szwagierczak, A., Dufour, A., Ksienzyk, B., Schneider, F., Herold, T., Mulaw, M., Kakadia, P.M., Schneider, S., et al. (2011). Genomic 5-hydroxymethylcytosine levels correlate with TET2 mutations and a distinct global gene expression pattern in secondary acute myeloid leukemia. Leukemia 25, 1649-1652. https://doi.org/10.1038/leu.2011.134
  55. Kunimoto, H., Fukuchi, Y., Sakurai, M., Sadahira, K., Ikeda, Y., Okamoto, S., and Nakajima, H. (2012). Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells. Sci. Rep. 2, 273. https://doi.org/10.1038/srep00273
  56. Kunimoto, H., Fukuchi, Y., Sakurai, M., Takubo, K., Okamoto, S., and Nakajima, H. (2014). Tet2-mutated myeloid progenitors possess aberrant in vitro self-renewal capacity. Blood 123, 2897- 2899. https://doi.org/10.1182/blood-2014-01-552471
  57. Langemeijer, S.M.C., Kuiper, R.P., Berends, M., Knops, R., Aslanyan, M.G., Massop, M., Stevens-Linders, E., van Hoogen, P., van Kessel, A.G., Raymakers, R.A.P., et al. (2009). Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet. 41, 838-842. https://doi.org/10.1038/ng.391
  58. Lemonnier, F., Couronne, L., Parrens, M., Jais, J.P., Travert, M., Lamant, L., Tournillac, O., Rousset, T., Fabiani, B., Cairns, R.A., et al. (2012). Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with T-FH-like features and adverse clinical parameters. Blood 120, 1466-1469. https://doi.org/10.1182/blood-2012-02-408542
  59. Li, Z., Cai, X., Cai, C.L., Wang, J., Zhang, W., Petersen, B.E., Yang, F.C., and Xu, M. (2011). Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509-4518. https://doi.org/10.1182/blood-2010-12-325241
  60. Lorsbach, R.B., Moore, J., Mathew, S., Raimondi, S.C., Mukatira, S.T., and Downing, J.R. (2003). TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17, 637-641. https://doi.org/10.1038/sj.leu.2402834
  61. Lu, F.L., Liu, Y.T., Jiang, L., Yamaguchi, S., and Zhang, Y. (2014). Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28, 2103-2119. https://doi.org/10.1101/gad.248005.114
  62. Maiti, A., and Drohat, A.C. (2011). Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286, 35334-35338. https://doi.org/10.1074/jbc.C111.284620
  63. Meggendorfer, M., Roller, A., Haferlach, T., Eder, C., Dicker, F., Grossmann, V., Kohlmann, A., Alpermann, T., Yoshida, K., Ogawa, S., et al. (2012). SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood 120, 3080-3088. https://doi.org/10.1182/blood-2012-01-404863
  64. Minor, E.A., Court, B.L., Young, J.I., and Wang, G.F. (2013). Ascorbate Induces Ten-Eleven Translocation (Tet) Methylcytosine Dioxygenase-mediated Generation of 5-Hydroxymethylcytosine. J. Biol. Chem. 288, 13669-13674. https://doi.org/10.1074/jbc.C113.464800
  65. Moran-Crusio, K., Reavie, L., Shih, A., Abdel-Wahab, O., Ndiaye-Lobry, D., Lobry, C., Figueroa, M.E., Vasanthakumar, A., Patel, J., Zhao, X., et al. (2011). Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11-24. https://doi.org/10.1016/j.ccr.2011.06.001
  66. Muto, T., Sashida, G., Oshima, M., Wendt, G.R., Mochizuki-Kashio, M., Nagata, Y., Sanada, M., Miyagi, S., Saraya, A., Kamio, A., et al. (2013). Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J. Exp. Med. 210, 2627-2639. https://doi.org/10.1084/jem.20131144
  67. Nakagawa, T., Lv, L., Nakagawa, M., Yu, Y.B., Yu, C., D'Alessio, A.C., Nakayama, K., Fan, H.Y., Chen, X., and Xiong, Y. (2015). CRL4(VprBP) E3 Ligase Promotes Monoubiquitylation and Chromatin Binding of TET Dioxygenases. Mol. Cell 57, 247-260. https://doi.org/10.1016/j.molcel.2014.12.002
  68. Odejide, O., Weigert, O., Lane, A.A., Toscano, D., Lunning, M.A., Kopp, N., Kim, S., van Bodegom, D., Bolla, S., Schatz, J.H., et al. (2014). A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123, 1293-1296. https://doi.org/10.1182/blood-2013-10-531509
  69. Ono, R., Taki, T., Taketani, T., Taniwaki, M., Kobayashi, H., and Hayashi, Y. (2002). LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62, 4075-4080.
  70. Ooi, S.K.T., O'Donnell, A.H., and Bestor, T.H. (2009). Mammalian cytosine methylation at a glance. J. Cell Sci. 122, 2787-2791. https://doi.org/10.1242/jcs.015123
  71. Paez, D., Gerger, A., Zhang, W., Yang, D., Labonte, M.J., Benhanim, L., Kahn, M., Lenz, F., Lenz, C., Ning, Y., et al. (2014). Association of common gene variants in the WNT/beta-catenin pathway with colon cancer recurrence. Pharmacogenomics J. 14, 142-150. https://doi.org/10.1038/tpj.2013.20
  72. Palomero, T., Couronne, L., Khiabanian, H., Kim, M.Y., Ambesi- Impiombato, A., Perez-Garcia, A., Carpenter, Z., Abate, F., Allegretta, M., Haydu, J.E., et al. (2014). Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat. Genet. 46, 166-170. https://doi.org/10.1038/ng.2873
  73. Papaemmanuil, E., Gerstung, M., Malcovati, L., Tauro, S., Gundem, G., Van Loo, P., Yoon, C.J., Ellis, P., Wedge, D.C., Pellagatti, A., et al. (2013). Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616-3627. https://doi.org/10.1182/blood-2013-08-518886
  74. Parsons, D.W., Jones, S., Zhang, X.S., Lin, J.C.H., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.M., Gallia, G.L., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807-1812. https://doi.org/10.1126/science.1164382
  75. Pastor, W.A., Aravind, L., and Rao, A. (2013). TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341-356. https://doi.org/10.1038/nrm3589
  76. Patel, J.P., Gonen, M., Figueroa, M.E., Fernandez, H., Sun, Z.X., Racevskis, J., Van Vlierberghe, P., Dolgalev, I., Thomas, S., Aminova, O., et al. (2012). Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl. J. Med. 366, 1079-1089. https://doi.org/10.1056/NEJMoa1112304
  77. Pronier, E., Almire, C., Mokrani, H., Vasanthakumar, A., Simon, A., Mor, B.D.R.M., Masse, A., Le Couedic, J.P., Pendino, F., Carbonne, B., et al. (2011). Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 118, 2551-2555. https://doi.org/10.1182/blood-2010-12-324707
  78. Quivoron, C., Couronne, L., Della Valle, V., Lopez, C.K., Plo, I., Wagner-Ballon, O., Do Cruzeiro, M., Delhommeau, F., Arnulf, B., Stern, M.H., et al. (2011). TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25-38. https://doi.org/10.1016/j.ccr.2011.06.003
  79. Raiber, E.A., Murat, P., Chirgadze, D.Y., Beraldi, D., Luisi, B.F., and Balasubramanian, S. (2015). 5-Formylcytosine alters the structure of the DNA double helix. Nat. Struct. Mol. Biol. 22, 44-49. https://doi.org/10.1038/nsmb.2936
  80. Rampal, R., Alkalin, A., Madzo, J., Vasanthakumar, A., Pronier, E., Patel, J., Li, Y.S., Ahn, J.H., Abdel-Wahab, O., Shih, A., et al. (2014). DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep. 9, 1841-1855. https://doi.org/10.1016/j.celrep.2014.11.004
  81. Sakata-Yanagimoto, M., Enami, T., Yoshida, K., Shiraishi, Y., Ishii, R., Miyake, Y., Muto, H., Tsuyama, N., Sato-Otsubo, A., Okuno, Y., et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 171-175. https://doi.org/10.1038/ng.2872
  82. Sasaki, M., Knobbe, C.B., Munger, J.C., Lind, E.F., Brenner, D., Brustle, A., Harris, I.S., Holmes, R., Wakeham, A., Haight, J., et al. (2012). IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656-659. https://doi.org/10.1038/nature11323
  83. Schiesser, S., Hackner, B., Pfaffeneder, T., Muller, M., Hagemeier, C., Truss, M., and Carell, T. (2012). Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chem. Int. Ed. Engl. 51, 6516-6520. https://doi.org/10.1002/anie.201202583
  84. Sharif, J., Muto, M., Takebayashi, S.I., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K., et al. (2007). The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908-912. https://doi.org/10.1038/nature06397
  85. Shen, L., Song, C.X., He, C., and Zhang, Y. (2014). Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu. Rev. Biochem. 83, 585-614. https://doi.org/10.1146/annurev-biochem-060713-035513
  86. Shide, K., Kameda, T., Shimoda, H., Yamaji, T., Abe, H., Kamiunten, A., Sekine, M., Hidaka, T., Katayose, K., Kubuki, Y., et al. (2012). TET2 is essential for survival and hematopoietic stem cell homeostasis. Leukemia 26, 2216-2223. https://doi.org/10.1038/leu.2012.94
  87. Shih, A.H., Jiang, Y.W., Meydan, C., Shank, K., Pandey, S., Barreyro, L., Antony-Debre, I., Viale, A., Socci, N., Sun, Y.M., et al. (2015). Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell 27, 502-515. https://doi.org/10.1016/j.ccell.2015.03.009
  88. Song, S.J., Ito, K., Ala, U., Kats, L., Webster, K., Sun, S.M., Jongen-Lavrencic, M., Manova-Todorova, K., Teruya-Feldstein, J., Avigan, D.E., et al. (2013a). The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell selfrenewal and transformation. Cell Stem Cell 13, 87-101. https://doi.org/10.1016/j.stem.2013.06.003
  89. Song, S.J., Poliseno, L., Song, M.S., Ala, U., Webster, K., Ng, C., Beringer, G., Brikbak, N.J., Yuan, X., Cantley, L.C., et al. (2013b). MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154, 311-324. https://doi.org/10.1016/j.cell.2013.06.026
  90. Spruijt, C.G., Gnerlich, F., Smits, A.H., Pfaffeneder, T., Jansen, P.W., Bauer, C., Munzel, M., Wagner, M., Muller, M., Khan, F., et al. (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146-1159. https://doi.org/10.1016/j.cell.2013.02.004
  91. Sun, M., Song, C.X., Huang, H., Frankenberger, C.A., Sankarasharma, D., Gomes, S., Chen, P., Chen, J.J., Chada, K.K., He, C., et al. (2013). HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc. Natl. Acad. Sci. USA 110, 9920-9925. https://doi.org/10.1073/pnas.1305172110
  92. Suzuki, M.M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465-476.
  93. Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935. https://doi.org/10.1126/science.1170116
  94. Tefferi, A., Levine, R.L., Lim, K.H., Abdel-Wahab, O., Lasho, T.L., Patel, J., Finke, C.M., Mullally, A., Li, C.Y., Pardanani, A., et al. (2009). Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia 23, 900-904. https://doi.org/10.1038/leu.2009.37
  95. Thol, F., Weissinger, E.M., Krauter, J., Wagner, K., Damm, F., Wichmann, M., Gohring, G., Schumann, C., Bug, G., Ottmann, O., et al. (2010). IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 95, 1668-1674. https://doi.org/10.3324/haematol.2010.025494
  96. Traina, F., Visconte, V., Jankowska, A.M., Makishima, H., O'Keefe, C.L., Elson, P., Han, Y.C., Hsieh, F.H., Sekeres, M.A., Mali, R.S., et al. (2012). Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis. PLos One 7, e43090. https://doi.org/10.1371/journal.pone.0043090
  97. Valinluck, V., and Sowers, L.C. (2007). Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67, 946-950. https://doi.org/10.1158/0008-5472.CAN-06-3123
  98. Viguie, F., Aboura, A., Bouscary, D., Ramond, S., Delmer, A., Tachdjian, G., Marie, J.P., and Casadevall, N. (2005). Common 4q24 deletion in four cases of hematopoietic malignancy: early stem cell involvement? Leukemia 19, 1411-1415. https://doi.org/10.1038/sj.leu.2403818
  99. Wang, Y., and Zhang, Y. (2014). Regulation of TET protein stability by Calpains. Cell Rep. 6, 278-284. https://doi.org/10.1016/j.celrep.2013.12.031
  100. Wang, L.F., Zhou, Y., Xu, L., Xiao, R., Lu, X.Y., Chen, L., Chong, J., Li, H.R., He, C., Fu, X.D., et al. (2015a). Molecular basis for 5- carboxycytosine recognition by RNA polymerase II elongation complex. Nature 523, 621-625. https://doi.org/10.1038/nature14482
  101. Wang, Y.P., Xiao, M.T., Chen, X.F., Chen, L.L., Xu, Y.P., Lv, L., Wang, P., Yang, H., Ma, S.H., Lin, H.P., et al. (2015b). WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol. Cell 57, 662-673. https://doi.org/10.1016/j.molcel.2014.12.023
  102. Ward, P.S., Patel, J., Wise, D.R., Abdel-Wahab, O., Bennett, B.D., Coller, H.A., Cross, J.R., Fantin, V.R., Hedvat, C.V., Perl, A.E., et al. (2010). The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225-234. https://doi.org/10.1016/j.ccr.2010.01.020
  103. Wu, H., and Zhang, Y. (2014). Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45-68. https://doi.org/10.1016/j.cell.2013.12.019
  104. Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.H., Ito, S., Yang, C., Wang, P., Xiao, M.T., et al. (2011a). Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17-30. https://doi.org/10.1016/j.ccr.2010.12.014
  105. Xu, Y.F., Wu, F.Z., Tan, L., Kong, L.C., Xiong, L.J., Deng, J., Barbera, A.J., Zheng, L.J., Zhang, H.K., Huang, S., et al. (2011b). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451-464. https://doi.org/10.1016/j.molcel.2011.04.005
  106. Xu, Y.F., Xu, C., Kato, A., Tempel, W., Abreu, J.G., Bian, C.B., Hu, Y.G., Hu, D., Zhao, B., Cerovina, T., et al. (2012). Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151, 1200-1213. https://doi.org/10.1016/j.cell.2012.11.014
  107. Yan, H., Parsons, D.W., Jin, G.L., McLendon, R., Rasheed, B.A., Yuan, W.S., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G.J., et al. (2009). IDH1 and IDH2 Mutations in Gliomas. N Engl. J. Med. 360, 765-773. https://doi.org/10.1056/NEJMoa0808710
  108. Yin, R., Mao, S.Q., Zhao, B., Chong, Z., Yang, Y., Zhao, C., Zhang, D., Huang, H., Gao, J., Li, Z., et al. (2013). Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J. Am. Chem. Soc. 135, 10396-10403. https://doi.org/10.1021/ja4028346
  109. Zhang, H.K., Zhang, X., Clark, E., Mulcahey, M., Huang, S., and Shi, Y.G. (2010). TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res. 20, 1390-1393. https://doi.org/10.1038/cr.2010.156
  110. Zhang, L., Lu, X., Lu, J., Liang, H., Dai, Q., Xu, G.L., Luo, C., Jiang, H., and He, C. (2012). Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 8, 328-330. https://doi.org/10.1038/nchembio.914
  111. Zhang, Q., Liu, X.G., Gao, W.Q., Li, P.S., Hou, J.L., Li, J.W., and Wong, J.M. (2014). Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked $\beta$-N-acetylglucosamine transferase (OGT). J. Biol. Chem. 289, 5986-5996. https://doi.org/10.1074/jbc.M113.524140
  112. Zhang, Q., Zhao, K., Shen, Q., Han, Y., Gu, Y., Li, X., Zhao, D., Liu, Y., Wang, C., Zhang, X., et al. (2015). Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389-393. https://doi.org/10.1038/nature15252

Cited by

  1. Modeling Myeloid Malignancies Using Zebrafish vol.7, pp.2234-943X, 2017, https://doi.org/10.3389/fonc.2017.00297
  2. New hope: the emerging role of 5-hydroxymethylcytosine in mental health and disease vol.8, pp.7, 2015, https://doi.org/10.2217/epi-2016-0020
  3. DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases vol.39, pp.12, 2015, https://doi.org/10.14348/molcells.2016.0276
  4. Tumor necrosis factor-α decreases EC-SOD expression through DNA methylation vol.60, pp.3, 2015, https://doi.org/10.3164/jcbn.16-111
  5. TET family dioxygenases and DNA demethylation in stem cells and cancers vol.49, pp.4, 2015, https://doi.org/10.1038/emm.2017.5
  6. Gene-body hypermethylation controlled cryptic promoter and miR26A1-dependent EZH2 regulation of TET1 gene activity in chronic lymphocytic leukemia vol.8, pp.44, 2017, https://doi.org/10.18632/oncotarget.20668
  7. Inhibition of DNA methyltransferase leads to increased genomic 5‐hydroxymethylcytosine levels in hematopoietic cells vol.8, pp.4, 2015, https://doi.org/10.1002/2211-5463.12392
  8. Epigenetic Effects of the 13 Vitamins vol.4, pp.6, 2015, https://doi.org/10.1007/s40495-018-0161-2
  9. Inhibitors of DNA Methylation and Histone Deacetylation as Epigenetically Active Drugs for Anticancer Therapy vol.25, pp.6, 2015, https://doi.org/10.2174/1381612825666190405144026
  10. Advances in detection and quantification of methylcytosine and its derivatives vol.42, pp.5, 2015, https://doi.org/10.1002/jssc.201801100
  11. Epigenetic Dysregulation at the Crossroad of Women’s Cancer vol.11, pp.8, 2015, https://doi.org/10.3390/cancers11081193
  12. Function determinants of TET proteins: the arrangements of sequence motifs with specific codes vol.20, pp.5, 2015, https://doi.org/10.1093/bib/bby053
  13. Global distribution of DNA hydroxymethylation and DNA methylation in chronic lymphocytic leukemia vol.12, pp.None, 2019, https://doi.org/10.1186/s13072-018-0252-7