• Title/Summary/Keyword: Epigenetic

Search Result 449, Processing Time 0.03 seconds

M6A reader hnRNPA2/B1 is essential for porcine embryo development via gene expression regulation

  • Kwon, Jeongwoo;Jo, Yu-Jin;Yoon, Seung-Bin;You, Hyeong-ju;Youn, Changsic;Kim, Yejin;Lee, Jiin;Kim, Nam-Hyung;Kim, Ji-Su
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is an N6-methyladenosine (m6A) RNA modification regulator and a key determinant of prem-RNA processing, mRNA metabolism and transportation in cells. Currently, m6A reader proteins such as hnRNPA2/B1 and YTHDF2 has functional roles in mice embryo. However, the role of hnRNPA2/B1 in porcine embryogenic development are unclear. Here, we investigated the developmental competence and mRNA expression levels in porcine parthenogenetic embryos after hnRNPA2/B1 knock-down. HhnRNPA2/B1 was localized in the nucleus during subsequent embryonic development since zygote stage. After hnRNPA2/B1 knock-down using double stranded RNA injection, blastocyst formation rate decreased than that in the control group. Moreover, hnRNPA2/B1 knock-down embryos show developmental delay after compaction. In blastocyste stage, total cell number was decreased. Interestingly, gene expression patterns revealed that transcription of Pou5f1, Sox2, TRFP2C, Cdx2 and PARD6B decreased without changing the junction protein, ZO1, OCLN, and CDH1. Thus, hnRNPA2/B1 is necessary for porcine early embryo development by regulating gene expression through epigenetic RNA modification.

Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation

  • Young-Dan Cho;Kyoung-Hwa Kim;Yong-Moo Lee;Young Ku;Yang-Jo Seol
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.437-454
    • /
    • 2022
  • Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.

Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome

  • Yi Wang;Shuwen Chen;Min Xue;Jinhu Ma;Xinrui Yi;Xinyu Li;Xuejin Lu;Meizi Zhu;Jin Peng;Yunshu Tang;Yaling Zhu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1317-1332
    • /
    • 2024
  • Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Methods: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

Gestational Exposure to Bisphenol A Causes DNA Hypomethylation and the Upregulation of Progesterone Receptor Expression in the Uterus in Adult Female Offspring Rats

  • Seung Gee Lee;Ji-Eun Park;Yong-Pil Cheon;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.195-203
    • /
    • 2023
  • Exposure to environmental chemicals, including endocrine-disrupting chemicals, during the gestational period can have profound adverse effects on several organs in offspring. Bisphenol A (BPA) can infiltrate the human body through food and drinks, and its metabolites can cross both the placental and the blood-brain barriers. In this study, we investigate the effect of gestational exposure to BPA on epigenetic, biochemical, and histological modifications in the uterine tissues of F1 adult offspring rats. Pregnant rats were exposed to BPA from gestational day 8-15, and changes in global DNA methylation in uterine tissues obtained from adult offspring born to the exposed mothers were analyzed. Global DNA methylation analysis revealed that gestational exposure to BPA resulted in DNA hypomethylation in the uterus. Progesterone receptor (PR) protein expression in uterine tissues was monitored using western blot analysis, which revealed that the PR protein content was considerably higher in all BPA-exposed groups than in the control. Immunohistochemical examination for the PR revealed that intense PR-positive cells were more frequently observed in the BPA-exposed group than in the control group. To date, the evidence that the upregulation of PRs observed in the present study was caused by the non-methylation of specific PR promoter regions is lacking. Conclusively, these results indicate that exposure to BPA during gestation induces epigenetic alterations in the uteri of adult female offspring. We speculate that the global DNA hypomethylation and upregulation of the PR observed simultaneously in this study might be associated with the uterus.

The Effects of Pueraria and Rehmannia Glutinosa Intake and Exercise on Epigenetic Modification in Ovariectomized Rat Skeletal Muscle (난소 절제 쥐의 골격근에서 갈근 및 지황 섭취와 운동이 후성 유전적 변화에 미치는 영향)

  • Jung, Hyun Ji;Kim, Hye Jin;Kwon, Oran;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1214-1222
    • /
    • 2015
  • The purpose of this study was to determine the effect of Pueraria lobate-root based combination supplementation containing Rehmannia glutinosa and exercise on histone modification in ovariectomized rat hindlimb skeletal muscle. Sixty rats were fed with high fat diet and randomly assigned into the following groups for 8 weeks: 1)HSV; High fat+Sedentary+Vehicle, 2)HSP; High fat+Sedentary+PR, 3)HSH; High fat+Sedentary+Estradiol, 4)HEV; High fat+Ex+Vehicle, 5)HEP; High fat+Ex+PR, 6)HEH; High fat+Ex+Estradiol. Exercise consisted of low intensity treadmill exercise(1-4th wk:15 m/min for 30 min, 5-8th wk: 18 m/min for 40 min, 5 times/week). The result of this study showed that exercise and Pueraria and Rehmannia glutinosa intake suppressed weight gain. Furthermore, exercise and Pueraria and Rehmannia glutinosa intake increased muscle mass. This study observed H3K9 acetylation and demethylation in plantaris muscle in exercised group, but no difference in soleus muscle. To test whether the decrease in HDAC4, HDAC5 and G9a mRNA levels after exercise and Pueraria/Rehmannia glutinosa intake, HDAC4, HDAC5 and G9a mRNA levels were determined by real-time PCR. Only exercise induced HDAC5 and G9a mRNA reduction in plantaris muscle, but not in soleus muscle. In conclusion, these data demonstrates that exercise and Pueraria/Rehmannia glutinosa intake effect on body compositions. These changes are regulated by epigenetic modifications, such as histone acetylation and methylation. Future studies should focus on gene-specific epigenetics and other epigenetic mechanism for Pueraria/Rehmannia glutinosa intake.

Identification of DNA Methylation Markers for NSCLC Using Hpall-Mspl Methylation Microarray (Hpall-Mspl Methylation Microarray를 이용한 비소세포폐암의 DNA Methylation Marker 발굴)

  • Kwon, Mi Hye;Lee, Go Eun;Kwon, Sun Jung;Choi, Eugene;Na, Moon Jun;Cho, Hyun Min;Kim, Young Jin;Sul, Hye Jung;Cho, Young Jun;Son, Ji Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.495-503
    • /
    • 2008
  • Background: Epigenetic alterations in certain genes are now known as at least important as genetic mutation in pathogenesis of cancer. Especially abnormal hypermethylation in or near promoter region of tumor suppressor genes (TSGs) are known to result in gene silencing and loss of gene function eventually. The authors tried to search for new lung cancer-specific TSGs which have CpG islands and HpaII sites, and are thought to be involved in carcinogenesis by epigenetic mechanism. Methods: Tumor tissue and corresponding adjacent normal tissue were obtained from 10 patients who diagnosed with non small cell lung cancer (NSCLC) and underwent surgery in Konyang university hospital in 2005. Methylation profiles of promoter region of 21 genes in tumor tissue & non-tumor tissue were examined with HpaII-MspI methylation microarray (Methyl-Scan DNA chip$^{(R)}$, Genomic tree, Inc, South Korea). The rates of hypermethylation were compared in tumor and non-tumor group, and as a normal control, we obtained lung tissue from two young patients with pneumothorax during bullectomies, methylation profiles were examined in the same way. Results: Among the 21 genes, 10 genes were commonly methylated in tumor, non-tumor, and control group. The 6 genes of APC, AR, RAR-b, HTR1B, EPHA3, and CFTR, among the rest of 11 genes were not methylated in control, and more frequently hypermethylated in tumor tissue than non-tumor tissue. Conclusion: In the present study, HTR1B, EPHA3, and CFTR are suggested as possible novel TSGs of NSCLC by epigenetic mechanism.

Polymorphisms in Epigenetic and Meat Quality Related Genes in Fourteen Cattle Breeds and Association with Beef Quality and Carcass Traits

  • Liu, Xuan;Usman, Tahir;Wang, Yachun;Wang, Zezhao;Xu, Xianzhou;Wu, Meng;Zhang, Yi;Zhang, Xu;Li, Qiang;Liu, Lin;Shi, Wanhai;Qin, Chunhua;Geng, Fanjun;Wang, Congyong;Tan, Rui;Huang, Xixia;Liu, Airong;Wu, Hongjun;Tan, Shixin;Yu, Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.467-475
    • /
    • 2015
  • Improvement for carcass traits related to beef quality is the key concern in beef production. Recent reports found that epigenetics mediates the interaction of individuals with environment and nutrition. The present study was designed to analyze the genetic effect of single nucleotide polymorphisms (SNPs) in seven epigenetic-related genes (DNMT1, DNMT3a, DNMT3b, DNMT3L, Ago1, Ago2, and HDAC5) and two meat quality candidate genes (CAPN1 and PRKAG3) on fourteen carcass traits related to beef quality in a Snow Dragon beef population, and also to identify SNPs in a total of fourteen cattle populations. Sixteen SNPs were identified and genotyped in 383 individuals sampled from the 14 cattle breeds, which included 147 samples from the Snow Dragon beef population. Data analysis showed significant association of 8 SNPs within 4 genes related to carcass and/or meat quality traits in the beef populations. SNP1 (13154420A>G) in exon 17 of DNMT1 was significantly associated with rib-eye width and lean meat color score (p<0.05). A novel SNP (SNP4, 76198537A>G) of DNMT3a was significantly associated with six beef quality traits. Those individuals with the wild-type genotype AA of DNMT3a showed an increase in carcass weight, chilled carcass weight, flank thicknesses, chuck short rib thickness, chuck short rib score and in chuck flap weight in contrast to the GG genotype. Five out of six SNPs in DNMT3b gene were significantly associated with three beef quality traits. SNP15 (45219258C>T) in CAPN1 was significantly associated with chuck short rib thickness and lean meat color score (p<0.05). The significant effect of SNP15 on lean meat color score individually and in combination with each of other 14 SNPs qualify this SNP to be used as potential marker for improving the trait. In addition, the frequencies of most wild-type alleles were higher than those of the mutant alleles in the native and foreign cattle breeds. Seven SNPs were identified in the epigenetic-related genes. The SNP15 in CAPN1 could be used as a powerful genetic marker in selection programs for beef quality improvement in the Snow Dragon Beef population.

Effects of Early Life Stress on the Development of Depression and Epigenetic Mechanisms of p11 Gene (생애 초기 유해 경험이 우울증의 발병과 p11 유전자의 후성유전기전에 미치는 영향)

  • Seo, Mi Kyoung;Choi, Ah Jeong;Lee, Jung Goo;Urm, Sang-Hwa;Park, Sung Woo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1002-1009
    • /
    • 2019
  • Early life stress (ELS) increases the risk of depression. ELS may be involved in the susceptibility to subsequent stress exposure during adulthood. We investigated whether epigenetic mechanisms of p11 promoter affect the vulnerability to chronic unpredictable stress (CUS) induced by the maternal separation (MS). Mice pups were separated from their dams (3 hr/day from P1-P21). When the pups reached adulthood, we applied CUS (daily for 3 weeks). The levels of hippocampal p11 expression were analyzed by quantitative real-time PCR. The levels of acetylated and methylated histone H3 at p11 promoter were measured by chromatin immunoprecipitation. Depression-like behavior was measured by the forced swimming test (FST). The MS and CUS group exhibited significant decreases in p11 mRNA level and the MS plus CUS group had a greater reduction in this level than the CUS group. The MS plus CUS group also resulted in greater reduction in H3 acetylation than the CUS group. This reduction was associated with an upregulation of histone deacetylase 5. Additionally, the MS plus CUS group showed a greater decrease in H3K4met3 level and a greater increase in H3K27 met3 level than the CUS group. Consistent with the reduction of p11 expression, the MS plus CUS group displayed longer immobility times in the FST compared to the control group. Mice exposed to MS followed by CUS had much greater epigenetic alterations in the hippocampus compared to adult mice that only experienced CUS. ELS can exacerbate the effect of stress exposure during adulthood through histone modification of p11 gene.

DNA methylation: a cause and consequence of type 2 diabetes

  • Kim, Mirang
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.38.1-38.6
    • /
    • 2019
  • DNA methylation is a relatively stable epigenetic modification that can regulate and stabilize gene expression patterns and hence establish cell identity. Because metabolic intermediates are key factors of DNA methylation and demethylation, perturbations in metabolic homeostasis can trigger alterations in cell-specific patterns of DNA methylation and contribute to disease development, including type 2 diabetes (T2D). During the past decade, genome-wide DNA methylation studies of T2D have expanded our knowledge of the molecular mechanisms underlying T2D. This review summarizes case-control studies of the DNA methylome of T2D and discusses DNA methylation as both a cause and consequence of T2D. Therefore, DNA methylation has potential as a promising T2D biomarker that can be applied to the development of therapeutic strategies for T2D.

Alternative Splicing and Its Impact as a Cancer Diagnostic Marker

  • Kim, Yun-Ji;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.74-80
    • /
    • 2012
  • Most genes are processed by alternative splicing for gene expression, resulting in the complexity of the transcriptome in eukaryotes. It allows a limited number of genes to encode various proteins with intricate functions. Alternative splicing is regulated by genetic mutations in cis-regulatory factors and epigenetic events. Furthermore, splicing events occur differently according to cell type, developmental stage, and various diseases, including cancer. Genome instability and flexible proteomes by alternative splicing could affect cancer cells to grow and survive, leading to metastasis. Cancer cells that are transformed by aberrant and uncontrolled mechanisms could produce alternative splicing to maintain and spread them continuously. Splicing variants in various cancers represent crucial roles for tumorigenesis. Taken together, the identification of alternative spliced variants as biomarkers to distinguish between normal and cancer cells could cast light on tumorigenesis.