• Title/Summary/Keyword: Epicenter

Search Result 147, Processing Time 0.026 seconds

Ionospheric F2-layer Perturbations Observed After the M8.8 Chile Earthquake on February 27, 2010, at Long Distance from the Epicenter

  • Hegai, Valery V.;Kim, Vitaly P.;Legen'ka, Anna D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The F2-layer critical frequency (foF2) data from several ionosondes are employed to study the long-distance effect of the M8.8 Chile Earthquake of February 27, 2010, on the F2 layer. Significant perturbations of the peak F2-layer electron density have been observed following the earthquake at two South African stations, Hermanus and Madimbo, which are located at great circle distances of ~8,000 and ~10,000 km from the earthquake epicenter, respectively. Simplified estimates demonstrate that the observed ionospheric perturbations can be caused by a long-period acoustic gravity wave produced in the F-region by the earthquake.

Characteristic Investigation of the Bedrock Earthquake Records for the Structural Time-History Seismic Analyses (구조물의 시간이력 지진해석을 위한 암반지진기록의 특성분석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.89-95
    • /
    • 2008
  • Until recently lots of time-history seismic analyses were performed with the earthquake motions recorded at the soft soil surface without taking into account the effects of the soft soil amplification. However, it is important to utilize the bedrock seismic motions for the rational seismic analyses of a structure considering the site soil conditions. In this study, 26 bedrock earthquake records were selected from publicly available 1557 seismic records provided by the Pacific Earthquake Engineering Research Center (PEER) for the study, and the characteristics of them were investigated. Study results showed that it is not reasonable to estimate earthquake acceleration intensity from the magnitude of an earthquake without considering the site soil conditions and it is also hard to draw any general relationships between earthquake acceleration intensity, earthquake magnitude and epicenter distance with bedrock earthquake records in the PEER database. However, 26 bedrock earthquake records selected in this study can be utilized for the time-history seismic analyses of a structure-soil system as bedrock earthquake ones, and it is also confirmed that it is necessary to take into account acceleration intensity, magnitude, epicenter distance and site conditions simultaneously for the proper use of those selected earthquake records.

Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake

  • Gihm, Yong Sik;Kim, Sung Won;Ko, Kyoungtae;Choi, Jin-Hyuck;Bae, Hankyung;Hong, Paul S.;Lee, Yuyoung;Lee, Hoil;Jin, Kwangmin;Choi, Sung-ja;Kim, Jin Cheul;Choi, Min Seok;Lee, Seung Ryeol
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.871-880
    • /
    • 2018
  • During and shortly after the 2017 Pohang Earthquake ($M_w$ 5.4), sand blows were observed around the epicenter for the first time since the beginning of instrumental seismic recording in South Korea. We carried out field surveys plus satellite and drone imagery analyses, resulting in observation of approximately 600 sand blows on Quaternary sediment cover in this area. Most were observed within 3 km of the epicenter, with the farthest being 15 km away. In order to investigate the ground's susceptibility to liquefaction, we conducted a trench study of a 30 m-long sand blow in a rice field 1 km from the earthquake epicenter. The physical characteristics of the liquified sediments (grain size, impermeable barriers, saturation, and low overburden pressure) closely matched the optimum ground conditions for liquefaction. Additionally, we found a series of soft sediment deformation structures (SSDSs) within the trench walls, such as load structures and water-escaped structures. The latter were vertically connected to sand blows on the surface, reflecting seismogenic liquefaction involving subsurface deformation during sand blow formation. This genetic linkage suggests that SSDS research would be useful for identifying prehistoric damage-inducing earthquakes ($M_w$ > 5.0) in South Korea because SSDSs have a lower formation threshold and higher preservational potential than geomorphic markers formed by surface ruptures. Thus, future combined studies of Quaternary surface faults and SSDSs are required to provide reliable paleoseismological information in Korea.

Epicenter Estimation Using Real-Time Event Packet of Quanterra digitizer (Quanterra 기록계의 실시간 이벤트 패킷을 이용한 진앙 추정)

  • Lim, In-Seub;Sheen, Dong-Hoon;Shin, Jin-Soo;Jung, Soon-Key
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.316-327
    • /
    • 2009
  • A standard for national seismological observatory was proposed on 1999. Since then, Quanterra digitizer has been installed and is operating on almost all of seismic stations which belong to major seismic monitoring organizations. Quanterra digitizer produce and transmit real-time event packet and data packet. Characteristics of event packet and arrival time of each channel's data packet on data center were investigated. Packet selection criteria using signal to noise ratio (hereafter SNR) and signal period from real-time event packet based on 100 samples per second (hereafter sps) velocity data were developed. Estimation of epicenter using time information of the selected event packet were performed and tested. A series of experiment show that event packets were received approximately 3~4 second earlier than data packets and the number of event packet was only 0.3% compare to data packets. Just about 5% against all of event packets were selected as event packet were related P wave of real earthquake. Using the selected event packets we can estimate an epicenter with misfit less than 10 km within 20 sec for local earthquake over magnitude 2.5.

A Study on the Response Energy Characteristics of Pyungchang Earthquake (평창지진의 에너지 응답 특성에 관한 연구)

  • Yoon, Myung-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.45-48
    • /
    • 2008
  • The Pyungchang earthquake(Jan. 2007, Ml4.9) have recorded PGA of about 0.15g at the Daegwanryung observation station nearby from the epicenter. In this paper the energy response spectrum analyses for the Pyungchang earthquake were carried out and compared with well known American earthquake Taft(1952).

  • PDF

A Numerical Study on the Effective Dimension in Slot-drilling Method (슬롯드릴링공법의 유효제원에 관한 수치해석적 연구)

  • Yoon, Ji-Sun;Lee, Jee-Hoon;Son, Sung-Hoon
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.50-58
    • /
    • 2010
  • This study explores the slot-drilling method that has not yet enough been studied in Korea and intends to provide a theoretical framework for putting the method into practice in a construction site. The possible reduction of ground vibration by implementing slot-drilling methods is addressed. Two main subjects dealt with include the variation of vibration velocity that is based on the distance between the slot-drilling and the epicenter of blasting and the analysis of appropriate effective dimension of slot-drilling width and height to control blasting vibration. This study shows that effect of vibration reduction decreases when distance of the slot-drilling and the epicenter of blasting is getting larger and also reveals that there is a correlation between the slot size and the vibration velocity at any point.

A source and phase identification study of the M/syb L/ 3.6 Cheolwon, Korea, earthquake occurred on December 10, 2002 (2002년 12월 10일 규모 3.6 철원지진의 진원요소 및 파상분석)

  • 김우한;박종찬;김성균;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.3-11
    • /
    • 2003
  • We analysed phases recorded by the M$_{L}$ 3.6 Cheolwon, Korea, earthquake occurred on the 10th of December, 2002 and computed source parameters such as hypocenter, origin time, earthquake magnitude and focal solutions. We used PmP and SmS phases to increase the accuracy in determinations of the hypocenter and origin time in addition to the phases such as Pg, Pn, Sg and Sn which are generally used in routine processes. The epicenter, depth, and origin time of the Cheolwon earthquake determined based on data of 11 stations within 200 km from the epicenter are 38.8108$^{\circ}$N, N, 127.2214'E, 11.955 km, and on 7:42:51.436. The earthquake magnitude obtained from all the stations is 3.6 M$_{L}$. The fault plane solution calculated based on data from 19 stations indicates slip process of a normal fault including strike-slip motion. The direction of compressional stress field has a large vertical component and a ESE-WNW direction of horizontal component, which is different from the mainly horizontal direction of main compressional stress field in the Korean Peninsula (ENE-WSW) obtained by previous studies.ies.s.

  • PDF

The Relationship Analysis between the Epicenter and Lineaments in the Odaesan Area using Satellite Images and Shaded Relief Maps (위성영상과 음영기복도를 이용한 오대산 지역 진앙의 위치와 선구조선의 관계 분석)

  • CHA, Sung-Eun;CHI, Kwang-Hoon;JO, Hyun-Woo;KIM, Eun-Ji;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.61-74
    • /
    • 2016
  • The purpose of this paper is to analyze the relationship between the location of the epicenter of a medium-sized earthquake(magnitude 4.8) that occurred on January 20, 2007 in the Odaesan area with lineament features using a shaded relief map(1/25,000 scale) and satellite images from LANDSAT-8 and KOMPSAT-2. Previous studies have analyzed lineament features in tectonic settings primarily by examining two-dimensional satellite images and shaded relief maps. These methods, however, limit the application of the visual interpretation of relief features long considered as the major component of lineament extraction. To overcome some existing limitations of two-dimensional images, this study examined three-dimensional images, produced from a Digital Elevation Model and drainage network map, for lineament extraction. This approach reduces mapping errors introduced by visual interpretation. In addition, spline interpolation was conducted to produce density maps of lineament frequency, intersection, and length required to estimate the density of lineament at the epicenter of the earthquake. An algorithm was developed to compute the Value of the Relative Density(VRD) representing the relative density of lineament from the map. The VRD is the lineament density of each map grid divided by the maximum density value from the map. As such, it is a quantified value that indicates the concentration level of the lineament density across the area impacted by the earthquake. Using this algorithm, the VRD calculated at the earthquake epicenter using the lineament's frequency, intersection, and length density maps ranged from approximately 0.60(min) to 0.90(max). However, because there were differences in mapped images such as those for solar altitude and azimuth, the mean of VRD was used rather than those categorized by the images. The results show that the average frequency of VRD was approximately 0.85, which was 21% higher than the intersection and length of VRD, demonstrating the close relationship that exists between lineament and the epicenter. Therefore, it is concluded that the density map analysis described in this study, based on lineament extraction, is valid and can be used as a primary data analysis tool for earthquake research in the future.

A source and phase identification study of the 10 December 2002 Cheolwon, Korea, earthquake of ML 3.6 (2002년 12월 10일 규모 3.6 철원지진의 진원요소 및 파상분석)

  • 김우한;박종찬;함인경;김성균;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.19-24
    • /
    • 2003
  • We analysed seismic phases recorded by the 10 December 2002 Cheolwon, Korea, earthquake of $M_{L}$ 3.6 and obtained source parameters such as hypocenter, origin time, earthquake magnitude. Velocity and acceleration records used in this study are from the KMA and KIGAM seismic networks. Due to the location of the epicenter in the north of the DMZ(Demilitarized Zone), direct Pg phases were recorded only at five stations in the area south of DMZ. Identification of refracted Pn phase as the first arrival is difficult in most stations. Therefore, the hypocenter determined by existing routine methods could be affected by a large error. In order to avoid the possibility of the problem, we employed a method of seismic phase analysis developed by Kim et al.. The direct, refracted, and reflected P and S phases were successfully identified using the method together with the travel time curve data. In order to improve the accuracy in determination of the hypocenter and origin time, we included PmP and SmS phases in the analysis in addition to the phases such as Pg, Pn, Sg and Sn. The epicenter, depth, and origin time of the Cheolwon earthquake determined based on data of 11 stations within 200km from the epicenter are $38.81^{\circ}$N, $127.22^{\circ}$E, 12.0km, and 7:42:51.4(local time), respectively. The average value of the local magnitude based on the Richter's definition from all the stations is 3.6 in $M_{L}$. This magnitude is smaller by 0.2 and 0.5 compared with magnitudes determined by KMA and KIGAM, respectively.

Development of Earthquake Early Warning System nearby Epicenter based on P-wave Multiple Detection (진원지 인근 지진 조기 경보를 위한 선착 P파 다중 탐지 시스템 개발)

  • Lee, Taehee;Noh, Jinseok;Hong, Seungseo;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2019
  • In this paper, the P-wave multiple detection system for the fast and accurate earthquake early warning nearby the epicenter was developed. The developed systems were installed in five selected public buildings for the validation. During the monitoring, a magnitude 2.3 earthquake occurred in Pohang on 26 September 2019. P-wave initial detection algorithms were operated in three out of four systems installed in Pohang area and recorded as seismic events. At the nearest station, 5.5 km from the epicenter, P-wave signal was detected 1.2 seconds after the earthquake, and S-wave was reached 1.02 seconds after the P-wave reached, providing some alarm time. The maximum accelerations recorded in three different stations were 6.28 gal, 6.1 gal, and 5.3 gal, respectively. The alarm algorithm did not work, due to the high threshold of the maximum ground acceleration (25.1 gal) to operate it. If continuous monitoring and analysis are to be carried out in the future, the developed system could use a highly effective earthquake warning system suitable for the domestic situation.