• Title/Summary/Keyword: Enzyme kinetics

Search Result 224, Processing Time 0.024 seconds

Purification and Properties of $\alpha$-Glucosidase from Mococcus halophilus (Pediococcus halophilus로부터 생성한 $\alpha$-Glucosidase의 정제 및 특성)

  • 민해기;이호근;문지웅;강국희
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.143-149
    • /
    • 1992
  • A bacterial strain No. 2, which highly produced a-glucosidase, was isolated from Kimchi and identified to be a similar species of Pediococcus halophilus. This enzyme was purified by protamine sulfate, ammonium sulfate fractionation, ion exchange and gel filtration. The maximal a-glucosidase activity was observed at pH 6.0 and this enzyme was stable at pH 6.0~ 7.5. The optimum temperature of this enzyme activity was $37^{\circ}C$, but enzyme activity was gradually lost above $37^{\circ}C$. This enzyme was activated by 10 mM MgCh and inhibited by 10 mM mercaptoethanol. The kinetics of PNPG(p-Nitrophenyl-a-D-glucopyranoside) and maltose were Kp0.52 mM/27.5 pg protein, $V_{max}$= 0.021 mM/min 27.5 ${\mu}g$ protein and $K_m$= 0.32 mMD7.5 ${\mu}g$ protein, $V_{max}$= 0.025 mM/min 27.5 ${\mu}g$ protein, respectively. The molecular weight of $\alpha$-glucosidase was about 37, 000.

  • PDF

Chemical Modification of Tryptophan Residue in Bovine Brain succinic Semlaldehyde Reductase

  • Hong, Joung-Woo;Jeon, Seong-Gyu;Bahn, Jae-Hoon;Park, Jin-Seu;Kwon, Hyeok-Yil;Cho, Sung-Woo;Choi, Soo-Young
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.583-587
    • /
    • 1997
  • Incubation of an NADPH-dependent succinic semialdehyde reductase from bovine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $6.8\times{10}^3$ $M^-1$ $min^{-1}$. The inactivation was prevented by preincubation of the enzyme with substrate succinic semialdehyde, but not with coenzyme NADPH. There was a linear relation-ship between oxindole formation and the loss of enzyme activity. Spectro-photometric studies indicated that about one oxindole group per molecule of the enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of succinic semialdehyde reductase is modulated by binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Purification and Partial Characterization of Thermostable Carboxyl Esterase from Bacillus stearothermophilus L1

  • Kim, Hyung-Kwoun;Park, Sun-Yang;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.37-42
    • /
    • 1997
  • A bacterial strain L1 producing a thermostable esterase was isolated from soil taken near a hot spring and identified as Bacillus stearothermophilus by its microbiological properties. The isolated thermostable esterase was purified by ammonium sulfate fractionation, ion .exchange and hydrophobic interaction chromatographies. The molecular weight of the purified enzyme was estimated to be 50,000 by SDS-PAGE. Its optimum temperature and pH for hydrolytic activity against PNP caprylate were $85^{\circ}C$ and 9.0, respectively. The purified enzyme was stable up to $70^{\circ}C$ and at a broad pH range of 4.0-11.5 in the presence of bovine serum albumin. The enzyme was inhibited by phenylmethylsulfonyl fluoride and diethyl p-nitrophenyl phosphate, indicating the enzyme is a serine esterase. The enzyme obeyed Michaelis-Menten kinetics in the hydrolysis of PNPEs and had maximum activity for PNP caproate ($C_6$) among PNPEs ($C_2-C_12$) tested.

  • PDF

Crystal Structure of (S)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridium butyricum and Its Mutations that Enhance Reaction Kinetics

  • Kim, Eun-Jung;Kim, Jieun;Ahn, Jae-Woo;Kim, Yeo-Jin;Chang, Jeong Ho;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1636-1643
    • /
    • 2014
  • 3-Hydroxybutyryl-CoA dehydrogenase is an enzyme that catalyzes the second step in the biosynthesis of n-butanol from acetyl-CoA, in which acetoacetyl-CoA is reduced to 3-hydroxybutyryl-CoA. To understand the molecular mechanisms of n-butanol biosynthesis, we determined the crystal structure of 3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum (CbHBD). The monomer structure of CbHBD exhibits a two-domain topology, with N- and C-terminal domains, and the dimerization of the enzyme was mostly constituted at the C-terminal domain. The mode of cofactor binding to CbHBD was elucidated by determining the crystal structure of the enzyme in complex with $NAD^+$. We also determined the enzyme's structure in complex with its acetoacetyl-CoA substrate, revealing that the adenosine diphosphate moiety was not highly stabilized compared with the remainder of the acetoacetyl-CoA molecule. Using this structural information, we performed a series of site-directed mutagenesis experiments on the enzyme, such as changing residues located near the substrate-binding site, and finally developed a highly efficient CbHBD K50A/K54A/L232Y triple mutant enzyme that exhibited approximately 5-fold higher enzyme activity than did the wild type. The increased enzyme activity of the mutant was confirmed by enzyme kinetic measurements. The highly efficient mutant enzyme should be useful for increasing the production rate of n-butanol.

Kinetic Study on the Immobilized Penicillin Amidase in a Differential Column Reactor (Differential column reactor에 있어서 고정화페니실린 아미다제의 반응속도론에 관한 연구)

  • Park, Jong-Moon;Park, Cha-Yong;Seong, Baik-Lin;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 1981
  • The penicillin amidase from Escherichia coli (ATCC 9637) was immobilized by entrappment in gelatin and DEAE-cellulose mixture cross-linked with glutaraldehyde, and the kinetics in a differential column reactor was studied. The optimal operating condition of a differential reactor was reasonably met when the enzyme loading was 1g, and 30 mM substrate solution in 0.1 M phosphate buffer (pH 8.0) was fed at flow rate 4$m\ell$/min and 4$0^{\circ}C$. The optimal pH and temperature were found to be 8.0 and 55$^{\circ}C$, respectively. The Michaelis-Menten constant was 4.8 mM while the maximum velocity was 308 units/g of the immobilized enzyme under the condition of the differential reactor. The effect of substrate inhibition disappeared in the immobilized enzyme preparation. The differential reactor was proved to be good for studying the true kinetics since the pH drop and the external diffusional resistance could be eliminated.

  • PDF

Kinetics and Equilibrium Study on β-glucosidase under High Hydrostatic Pressure (고압에서 β-glucosidase 반응속도론 및 평형에 관한 연구)

  • Han, Jin Young;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2011
  • $\beta$-Glucosidase enzyme reaction under high hydrostatic pressure was investigated in terms of physical chemistry. A model substrate (p-nitrophenyl-${\beta}$-D-glucopyranoside(pNPG)) was used, and the pressure effects on the enzymatic hydrolysis (pNPG${\rightarrow}$pNP) at 25 MPa, 50 MPa, 75 MPa, and 100 MPa were analyzed. Two parts of the reaction such as kinetic and equilibrium stages were considered for mathematical modelling, and their physicochemical parameters such as forward and inverse reaction constants, equilibrium constant, volume change by pressure, etc. were mathematically modeled. The product concentration increased with pressure, and the two stages of reaction were observed. Prediction models were derived to numerically compute the product concentrations according to reaction time over kinetic to equilibrium stages under high pressure condition. Conclusively, the $\beta$-Glucosidase enzyme reaction could be activated by pressurization within 100 MPa, and the developed models were very successful in their prediction.

Affinity Labeling of E. coli GTP Cyclohydrolase I by a Dialdehyde Derivative of Guanosine Triphosphate

  • Ahn, Chi-Young;Park, Sang-Ick;Kim, Ju-Myeong;Yim, Jeong-Bin
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.72-78
    • /
    • 1995
  • Time-dependent inactivation of E. coli GTP cyclohydrolase I with a 2',3'-dialdehyde derivative of GTP (oGTP) was directed to the active site of the enzyme, and was dependent on the concentration of oGTP. The kinetics of inactivation were biphasic with a rapid reaction occurring immediately upon exposure of the enzyme to oGTP followed by a slow rate of inactivation. The $K_i$ value of oGTP for the enzyme was 0.25 mM. Inactivation was prevented by preincubation of the enzyme with GTP, the substrate of the enzyme. At 100% inactivation, 2.3 mol of [8.5'-$^3H$]oGTP were bound per each enzyme subunit, which consists of two identical polypeptides. The active site residue which reacted with the affinity label was lysine. oGTP interacted selectively with the ${\varepsilon}$-amino group of lysine in the GTP-binding site to form a morpholine-like structure which was stable without sodium borohydride treatment. However, triphosphate group was eliminated during the hydrolysis step. To identify the active site of the enzyme, [8.5'-$^3H$]oGTP-labeled enzyme was cleaved by endoproteinase Lys-C, and the $^3H$-labeled peptide was purified by HPLC. The amino acid sequence of the active site peptide was Pro-Ser-Leu-Ser-Lys, which corresponds to the aminoterminal sequence of the enzyme.

  • PDF

Purification and Characterization of a Novel Salt-tolerant Protease Produced by Saccharomyces sp. B101 Isolated from Baker's Dough Yeast

  • Hwang, Joo-Yeon;Kim, Sang-Moo;Heo, Seok;Kim, Cheon-Jei;Lee, Chi-Ho;Lee, Si-Kyung
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.766-771
    • /
    • 2008
  • The proteolytic enzyme from Saccharomyces sp. B101 was purified to homogeneity by ammonium sulfate fractionation, ultrafiltration, diethyl aminoethyl (DEAE)-Sephadex A-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography from the culture supernatant of Saccharomyces sp. B101. The specific activity and the purification fold of the purified enzyme were 4,688.9 unit/mg and 18, respectively. The molecular weight of the purified enzyme was estimated to be 33 kDa by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature for the enzyme activity were pH 8.5 and $30^{\circ}C$, respectively. The enzyme activity was relatively stable in the pH range of 6.5-8.5 at below $35^{\circ}C$. The salt-tolerance and stability for the enzyme activity were relatively stable even at NaCl concentrations of 10 and 15%. The activity of enzyme was inhibited by $Ag^{2+}$ and $Fe^{2+}$, and activated by $Mn^{2+}$. In addition, the enzyme activity was potently inhibited by ethylenediaminetetraacetic acid (EDTA) and phenylmethyl sulfonylfluoride (PMSF). Based on these findings we concluded that the purified enzyme was a serine protease. Km and Vmax values for hammastein milk casein were 1.02 mg/mL and 278.38 unit/mL, respectively.

Kinetic Behavior of Immobilized Tyrosinase on Carbon in a Simulated Packed-Bed Reactor (충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구)

  • Shin, Sun Kyoung;Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and oxygen. This enzyme has potential application for phenol degradation in waste water. A simulated reactor was a packed-bed reactor of 2.54cm in diameter and 10cm long, loaded with the immobilized carbon particle with an average diameter of $550{\mu}m$. A phenol feed in the strength of 55.5mM(5220ppm) was used to observe the behavior of the immobilized enzyme column at three different dissolved oxygen levels of 0.08445mM(2.7ppm), 0.1689mM(5.4ppm) and 0.3378mM(9.5ppm) with the flow rates in the range of 60(1mL/s) to 180mL/min(3mL/s). Examination of the Biot number and Damkolher numbers of the immobilized system enables us to eliminate the contribution of external mass transfer to set of differential equations derived from the dispersion model. Solution of the equation was finally obtained numerically with the application of the Danckwert boundary conditions and the assumed zero-and first order rates on the non-linear two substrate enzyme kinetics. Higher conversion of phenol was observed at the low flow rates and at the higher oxygen concentration. Comparison of axial dispersion and plug flow model showed that no detectable difference was observed in the column outlet conversion between the axial and the plug flow models which was in complete agreement with the previous studies.

  • PDF

Modeling Fresh Produce Respiration and Designing Modified Atmosphere Package

  • Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.3_4
    • /
    • pp.113-120
    • /
    • 2007
  • The method to characterize the fresh produce respiration was presented with possible application of modified atmosphere package design. Particularly the respiration model based on enzyme kinetics was introduced as function of oxygen and carbon dioxide concentrations. The method to estimate the equilibrated package atmosphere for any package conditions was presented by incorporation of $O_2$ and $CO_2$ permeabilities of the packaging film. Temperature dependences for fresh produce respiration and gas permeation were given by Arrhenius equation and then used to analyze the effect of temperature on the package atmosphere. An example analysis was presented for better understanding of the concept.

  • PDF