• Title/Summary/Keyword: Enzyme cloning and expression

Search Result 240, Processing Time 0.025 seconds

Cloning, Expression, and Characterization of a Thermostable GH51 ${\alpha}-\small{L}$-Arabinofuranosidase from Paenibacillus sp. DG-22

  • Lee, Sun Hwa;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.236-244
    • /
    • 2014
  • The gene encoding ${\alpha}-\small{L}$-arabinofuranosidase (AFase) from Paenibacillus sp. DG-22 was cloned, sequenced, and expressed in Escherichia coli. The AFase gene (abfA) comprises a 1,509 bp open reading frame encoding 502 amino acids with a molecular mass of 56,520 daltons. The deduced amino acid sequence of the gene shows that AbfA is an enzyme consisting of only a catalytic domain, and that the enzyme has significant similarity to AFases classified into the family 51 of the glycosyl hydrolases. abfA was subcloned into the pQE60 expression vector to fuse it with a six-histidine tag and the recombinant AFase (rAbfA) was purified to homogeneity. The specific activity of the recombinant enzyme was 96.7 U/mg protein. Determination of the apparent molecular mass by gel-filtration chromatography indicated that AbfA has a tetrameric structure. The optimal pH and temperature of the enzyme were 6.0 and $60^{\circ}C$, respectively. The enzyme activity was completely inhibited by 1 mM $HgCl_2$. rAbfA was active only towards p-nitrophephenyl ${\alpha}-\small{L}$-arabinofuranoside and exhibited $K_m$ and $V_{max}$ values of 3.5 mM and 306.1 U/mg, respectively. rAbfA showed a synergistic effect in combination with endoxylanase on the degradation of oat spelt xylan and wheat arabinoxylan.

Cloning, Analysis, and Expression of the Gene for Thermostable Polyphosphate Kinase of Thermus caldophilus GK24 and Properties of the Recombinant Enzyme

  • Hoe, Hyang-Sook;Lee, Sung-Kyoung;Lee, Dae-Sil;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2003
  • The gene encoding Thermus caldophilus GK24 polyphosphate kinase (Tca PPK) was cloned and sequenced. The gene contains an open reading frame encoding 608 amino acids with a calculated molecular mass of 69,850 Da. The deduced amino acid sequence of Tca PPK showed a 40% homology to Escherichia coli PPK, and $39\%$ to Klebsiella aerogenes PPK. The Tca ppk gene was expressed under the control of the T7lac promoter on pET-22b(+) in E. coli and its enzyme was purified about 70-fold with $36\%$ yield, following heating and HiTrap chelating HP column chromatography. The native enzyme was found to have an approximate molecular mass of 580,000 Da and consisted of eight subunits. The optimum pH and temperature of the enzyme were 5.5 and $70^{\circ}C$, respectively. A divalent cation was required for the enzyme activity, with $Mg^2+$ being the most effective.

Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut

  • Chandrasekharaiah, Matam;Thulasi, Appoothy;Bagath, M.;Kumar, Duvvuri Prasanna;Santosh, Sunil Singh;Palanivel, Chenniappan;Jose, Vazhakkala Lyju;Sampath, K.T.
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and $37^{\circ}C$, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.

Cloning, Characterization of Pichia etchellsii $\beta-Glucosidase$ II and Effect of Media Composition and Feeding Strategy on its Production in a Bioreactor

  • Sethi Benu;Jain Monika;Chowdhary Manish;Soni Yogesh;Bhatia Yukti;Sahai Vikram;Mishra Saroj
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.43-51
    • /
    • 2002
  • The cloning and expression of $\beta-glucosidase$ II, encoded by the gene ${\beta}glu2$, from thermotolerant yeast Pichia etchellsii into Escherichia coli is described. Cloning of the 7.3 kb BamHI/SalI yeast insert containing ${\beta}glu2$ in pUC18, which allowed for reverse orientation of the insert, resulted in better enzyme expression. Transformation of this plasmid into E. coli JM109 resulted in accumulation of the enzyme in periplasmic space. At $50^{\circ}C$, the highest hydrolytic activity of 1686 IU/g protein was obtained on sophorose. Batch and fed-batch techniques were employed for enzyme production in a 14 L bioreactor. Exponential feeding rates were determined from mass balance equations and these were employed to control specific growth rate and in turn maximize cell growth and enzyme production. Media optimization coupled with this strategy resulted in increased enzyme units of 1.2 kU/L at a stabilized growth rate of $0.14\;h^{-l}$. Increased enzyme production in bioreactor was accompanied by formation of inclusion bodies.

Cloning and Expression in Escherichia coli of a Bacteriolytic Enzyme Gene from Alkalophilic Bacillus sp.

  • Yu, Ju-Hyun;Jung, Myeong-Ho;Park, Hee-Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.161-165
    • /
    • 1992
  • The gene encoding the bacteriolytic enzyme cell wall peptidoglycan hydrolase from alkalophilic Bacillus sp. was cloned in E. coli using pBR322 as a vector. A recombinant plasmid, designated pYTR451, was isolated and the size of the cloned HindIII fragment was found to be 4.8 Kb. The cell wall hydrolysis activity of an extract of the E. coli harboring the recombinant plasmid pYTR 451 was detected by SDS- polyacrylamide gel containing 0.2% (w/v) purified cell wall of Bacillus sp. The molecular weight of the enzyme was estimated to be about 27, 000 corresponding to the molecular weight of the Bacillus sp. bacteriolytic enzyme. The recombinant plasmid was found to contain the fragment originated from Bacillus sp. YJ-451 chromosomal DNA by Southern hybridization.

  • PDF

Cloning, Expression, and Characterization of a Glycoside Hydrolase Family 118 ${\beta}$-Agarase from Agarivorans sp. JA-1

  • Lee, Dong-Geun;Jeon, Myong Je;Lee, Sang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1692-1697
    • /
    • 2012
  • We report a glycoside hydrolase (GH)-118 ${\beta}$-agarase from a strain of Agarivorans, in which we previously reported recombinant expression and characterization of the GH-50 ${\beta}$-agarase. The GH comprised an open reading frame of 1,437 base pairs, which encoded a protein of 52,580 daltons consisting of 478 amino acid residues. Assessment of the entire sequence showed that the enzyme had 97% nucleotide and 99% amino acid sequence similarities to those of GH-118 ${\beta}$-agarase from Pseudoalteromonas sp. CY24, which belongs to a different order within the same class. The gene corresponding to a mature protein of 440 amino acids was inserted, recombinantly expressed in Escherichia coli, and purified to homogeneity with affinity chromatography. It had maximal activity at $35^{\circ}C$ and pH 7.0 and had 208.1 units/mg in the presence of 300 mM NaCl and 1 mM $CaCl_2$. More than 80% activity was maintained after 2 h exposure to $35^{\circ}C$; however, < 40% activity remained at $45^{\circ}C$. The enzyme hydrolyzed agarose to yield neoagarooctaose as the main product. This enzyme could be useful for industrial production of functional neoagarooligosaccharides.

Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.

Cloning, Expression, and Purification of Recombinant Uricase Enzyme from Pseudomonas aeruginosa Ps43 Using Escherichia coli

  • Shaaban, Mona I.;Abdelmegeed, Eman;Ali, Youssif M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.887-892
    • /
    • 2015
  • Uricase is an important microbial enzyme that can be used in the clinical treatment of gout, hyperuricemia, and tumor lysis syndrome. A total of 127 clinical isolates of Pseudomonas aeruginosa were tested for uricase production. A Pseudomonas strain named Ps43 showed the highest level of native uricase enzyme expression. The open reading frame of the uricase enzyme was amplified from Ps43 and cloned into the expression vector pRSET-B. Uricase was expressed using E. coli BL21 (DE3). The ORF was sequenced and assigned GenBank Accession No. KJ718888. The nucleotide sequence analysis was identical to the coding sequence of uricase gene puuDof P. aeruginosa PAO1. We report the successful expression of P. aeruginosa uricase in Escherichia coli. E. coli showed an induced protein with a molecular mass of about 58 kDa that was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. We also established efficient protein purification using the Ni-Sepharose column with activity of the purified enzyme of 2.16 IU and a 2-fold increase in the specific activity of the pure enzyme compared with the crude enzyme.

Cloning and Expression of an Acidophilic $\alpha$-Amylase Gene from Bacillus circulans in Escherichia coli (Bacillus circulans의 호산성 $\alpha$-amylase 유전자의 클로닝 및 발현)

  • 이종석;김지연;김한복;이동석
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.112-118
    • /
    • 2000
  • A new gene encoding an acidophilic TEX>$\alpha$-amylase of Bacillus cil-culans KCTC3004 was cloned into Eschericlzia coli using pUC19 as a vector. The gene localized in the 5.8 kb PstI DNA fragment was expressed independently of its orientation in the cloning vector showing enzyme activity about 40 times greater than that produced by the original B, circulans The optimum pH and temperature of the cloned enzyme were pH 3.6 and 45^{\circ}C.$ respectively. The enzyme hydrolyzed starch to produce maltotriose and maltooligosaccharides. The SDS-PAGE and zymopram of the enzyme produced in E coli(p.4L850) indicated a molecular weight of 55,000.

  • PDF

Molecular Cloning and Expression of a Xylanase Gene from Alkalophilic Bacillus sp.

  • Yu, Ju-Hyun;Kang, Yun-Sook;Park, Young-Seo;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.251-255
    • /
    • 1991
  • A 16 kilobase (kb) HindIII fragment of alkalophilic Bacillus sp. YC-335 containing a gene for xylanase synthesis was inserted at the HindIII site of pBR322 and cloned in Escherichia coli HB101. After subcloning of recombinant plasmid pYS52, the 1.5 kb fragment was found to code for xylanase activity, and the hybrid plasmid was named pYS55. The DNA insert of the plasmid was subjected to restriction enzyme mapping, which showed that pYS55 had single site for PuvII and SstI in the 1.5 kb insert fragment. Southern hybridization analysis revealed that the cloned gene was hybridized with chromosomal DNA from alkalophilic Bacillus sp. YC-335. About 64% of the enzyme activity was observed in the extracellular and periplasmic space of E. coli HB10l carrying pYS55.

  • PDF