• Title/Summary/Keyword: Enzyme I

Search Result 2,064, Processing Time 0.024 seconds

Serum Nitric Oxide and Tumor Necrosis Factor-α Levels in Patients with Kawasaki Disease (가와사키병 환아에서 면역글로불린 투여 전후의 혈중 Nitric Oxide와 Tumor Necrosis Factor-α에 대한 연구)

  • Park, Ji Hye;Shin, Jee Seon;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.7
    • /
    • pp.772-778
    • /
    • 2005
  • Purpose : Kawasaki disease(KD) is a systemic panvasculitis that causes coronary artery lesions. KD is accompanied by immunoregulatory abnormalities. Nitric oxide(NO) can induce relaxation of blood vessels by activating guanylate cyclase in smooth muscle cells and high levels of NO may result in coronary artery lesions. We investigated tumor necrosis factor$(TNF)-{\alpha}$ and NO production before and after intravenous immunoglobulin(IVIG) therapy to study the roles of NO and $TNF-{\alpha}$ in KD with coronary artery lesions. Methods : Serum levels of NO and $TNF-{\alpha}$ were measured in 24 patients with KD(group I, eight patients with normal coronary artery; group II, 16 patients with coronary artery lesions) and 23 controls(group III, 13 afebrile controls; group IV, 10 febrile controls). Blood samples from each subject were drawn before and after IVIG therapy and in the convalescent stage. Serum concentrations of NO and $TNF-{\alpha}$ were measured by enzyme linked immuno sorbent assay. Results : The NO levels before IVIG therapy were significantly higher in group II than in group I, group III and group IV. After IVIG therapy the levels of NO were significantly higher in group I and group II than in group III. The $TNF-{\alpha}$ levels before IVIG therapy were significantly higher in group I and group II than in group III. The serum $TNF-{\alpha}$ and NO levels were higher before IVIG therapy and decreased through the convalescent stage in KD patients. In the acute stage of KD patients with coronary artery lesions, serum NO levels significantly correlated with white blood cells (r=0.43, P<0.05). Conclusion : The serum concentration levels of $TNF-{\alpha}$ and NO were abnormally high in KD patients and NO concentrations were statistically higher in the KD patients with coronary artery abnormalities than those without coronary abnormality during the early stage of the KD. These results suggest NO may be involved in the development of coronary artery lesions.

The Effects of Treadmill Exercise on Cognitive Performance, Brain Mitochondrial Aβ-42, Cytochrome c, SOD-1, 2 and Sirt-3 Protein Expression in Mutant (N141I) Presenilin-2 Transgenic Mice of Alzheimer's Disease (트레드밀 운동이 mutant (N141I) presenilin-2 유전자를 이식한 알츠하이머질환 모델 생쥐 뇌의 Aβ-42, cytochrome c, SOD-1, 2와 Sirt-3 단백질 발현에 미치는 영향)

  • Koo, Jung-Hoon;Eum, Hyun-Sub;Kang, Eun-Bum;Kwon, In-Su;Yeom, Dong-Cheol;An, Gil-Young;Oh, Yoo-Sung;Baik, Young-Soo;Cho, In-Ho;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.444-452
    • /
    • 2010
  • The purpose of this study was to investigate the effects of treadmill exercise on $A{\beta}$-42, cytochrome c, SOD-1, 2 and Sirt-3 protein expressions in brain cytosol and mitochondria in mutant (N141I) presenilin-2 transgenic mice with Alzheimer's disease (AD). The mice were divided into four groups (Non-Tg-sedentary, n=5; Non-Tg treadmill exercise, n=5; Tg-sedentary, n=5; Tg treadmill exercise, n=5). To evaluate the neuroprotective effect of treadmill exercise, Non-Tg and Tg mice were subjected to exercise training on a treadmill for 12 wk, after which their brain cytosol and mitochondria were evaluated to determine whether any changes in the cognitive performance, $A{\beta}$-42 protein, cytochrome c protein, anti-oxidant enzymes (SOD-1, SOD-2) and Sirt-3 protein had occurred. The results indicated that treadmill exercise resulted in amelioration in cognitive deficits of Tg mice. In addition, the expressions of mitochondrial $A{\beta}$-42 and cytosolic cytochrome c protein were decreased in the brains of Tg mice after treadmill exercise, whereas antioxidant enzymes, SOD-l and SOD-2 were significantly increased in response to treadmill exercise. Furthermore, treadmill exercise significantly increased the expression of Sirt-3 protein in Non-Tg and Tg mice. Taken together, these results suggest that treadmill exercise is a simple behavioral intervention which can sufficiently improve cognitive performance and inhibit $A{\beta}$-induced oxidative stress in AD.

Isolation and Characterization of Antifungal Compounds Produced by Bacillus polyfermenticus CJ6 Isolated from Meju (메주에서 분리한 Bacillus polyfermenticus CJ6가 생산하는 항진균 물질의 분리 및 특성)

  • Yang, Eun-Ju;Ma, Seung-Jin;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.57-65
    • /
    • 2012
  • Antifungal compounds from Bacillus polyfermenticus CJ6 were purified using SPE, preparative HPLC, and reverse phase-HPLC. Antifungal compounds from B. polyfermenticus CJ6 were separated into three fractions (8, B, C) using preparative HPLC. LC/MS analysis of antifungal peaks suggested that B. polyfermenticus CJ6 produces lipopeptides; two kinds of iturin A ($C_{14}$, $C_{15}$), three kinds of surfactins ($C_{13}$, $C_{14}$, $C_{15}$), four kinds of fengycin A ($C_{14}$, $C_{15}$, $C_{16}$, $C_{17}$) and two kinds fengycin B ($C_{16}$, $C_{17}$). The antifungal activity of fraction 8, which was presumed as inturin A, was found to be stable after the pH, heat or proteolytic enzyme treatment, but it was unstable at 50-$70^{\circ}C$ for 24 hr. The antifungal activity of fraction B, which presumed as surfactins and fengycin A, was found to be stable after the heat treatment, but it was unstable in the pH 3.0 and after the protease (type I) or ${\alpha}$-chymotrypsin treatment. The antifungal activity of fraction C, which was presumed as fengycin A and B, was found to be stable in the pH 3.0-9.0 range and the heat treatment, but it was unstable with the treatment of protease (type I). The amino acid composition of the purified peaks 8-1 and 8-2 were Asx, Tyr, Gln, Pro, and Ser in a molar ratio of 3:1:1:1:1, which showed the same amino acid composition as iturin. From these results, we confirmed that antifungal compounds from B. polyfermenticus CJ6 most likely belonged to iturin A as well as surfactins and fengycins. As lipopeptides are known to act in a synergistic manner, the antifungal compounds from B. polyfermenticus CJ6 might have potential uses in biotechnology and biopharmaceutical applications.

Effects of Primisulfuron and Terbufos on Growth and Acetolactate Synthase Activity in Several Corn Cultivars (Primisulfuron과 살충제(殺蟲劑) Terbufos의 상호작용(相互作用)이 옥수수품종(品種)의 생장(生長) 및 Acetolactate Synthase산소(酸素) 활성(活性)에 미치는 영향(影響))

  • Piao, R.Z.;Pyon, J.Y.;Roh, S.W.;Ahn, B.S.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.171-178
    • /
    • 1998
  • Growth response and acetolactate synthase(ALS) activity were examined to determine the resistance of corn cultivars to primisulfuron when primisulfuron and/ or insecticide Terbufos were applied. Pioneer 3571 IR showed resistance to primisulfuron regardless of Terbufos treatment, but Pioneer 3571 was greatly injured with primisulfuron plus Terbufos treatment. Suwon 118 was relatively tolerant to primisulfuron compared to Chalok 2, but crop injury was occurred at both cultivars by primisulfuron plus Terbufos treatment. ALS activity at Pioneer 3751 IR was very high in primisulfuron and/ or Terbufos treatment. Suwon 118 also showed higher ALS activity compared to Pioneer 3751 and Chalok 2, but ALS activities were greatly decreased by primisulfuron plus Terbufos treatment at Suwon 118 and Chalok 2. The $I_{50}$ concentration for 50% inhibition of the ALS enzyme was 10.0, 0.06, 7.75, and 0.04${\mu}M$ for Pioneer 3751 IR, Pioneer 3751, Suwon 118, and Chalok 2, respectively. Consequently, resistance of corn cultivars to primisulfuron was significantly related to ALS activity. Crop injury and lower ALS activity were recognized in susceptible corn cultivars by primisulfuron plus Terbufos treatment.

  • PDF

Fermentation Characteristics and Increased Functionality of Doenjang Prepared with Bamboo Salt (죽염 된장의 발효 특성 및 기능성 증진 효과)

  • Jeong, Min-Woo;Jeong, Ji-Kang;Kim, Sin-Jeong;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.12
    • /
    • pp.1915-1923
    • /
    • 2013
  • The aim of this study is carried out to evaluate the fermentation characteristics and increased functionality when doenjang was prepared with bamboo salts. Grain type mejus were fermented with mixed starter cultures of Aspergillus oryzae, Bacillus subtilis, and Lactococcus lactis. These mejus were mixed with different kinds of salts-purified salt (PD), sea salt (SD), one-time baked bamboo salt ($1{\times}BD$), three-time baked bamboo salt ($3{\times}BD$), and nine-time baked bamboo salt ($9{\times}BD$)- when doenjangs were prepared. For doenjang fermentation period of 8 weeks at $37^{\circ}C$, the fermentation characteristics of all the groups were compared. The amino type nitrogen content and enzyme activities (protease and ${\alpha}$-amylase) in the samples were significantly increased. In DPPH radical scavenging activities and hydroxyl radical scavenging activities, $9{\times}BD$ (47% and 69%) showed the highest scavenging activities compared to PD (40% and 49%), SD (42% and 57%), $1{\times}BD$ (42% and 64%) and $3{\times}BD$ (45% and 65%) (P<0.05). The anticancer effects of doenjang in HT-29 cancer cells indicated all the groups, especially doenjang prepared with bamboo salts were higher than the others (P<0.05). Apoptosis related genes of Bax and Bcl-2, as well as inflammation related genes of iNOS and COX-2 were regulated by the treatment of doenjangs in HT-29 cancer cells. SD, $1{\times}BD$, $3{\times}BD$, and $9{\times}BD$ increased the expression level of Bax and decreased the expression level of Bcl-2, iNOS, and COX-2. These results suggest that sea salt and bamboo salt especially bamboo salt could improve fermentation characteristics and functionality of doenjang and play an important role in regulating apoptosis and inflammation related genes in cancer cells.

Suppressive Effects of Epigallocatechin Gallate Pretreatment on the Expression of Inflammatory Cytokines in RAW264.7 Cells Activated by Lipopolysaccharide (Lipopolysaccharide로 활성화된 RAW264.7세포에서 염증반응사이토카인 발현에 대한 Epigallocatechin gallate의 억제효능연구)

  • Seo, Eun Ji;Go, Jun;Kim, Ji Eun;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Park, Chan Kyu;Lee, Hyun Ah;Kim, Dong Seob;Son, Hong Joo;Lee, Cung Yeoul;Lee, Hee Seob;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.961-969
    • /
    • 2015
  • Epigallocatechin gallate (EGCG), the main catechin in green tea, has been shown to have some beneficial effects against various human diseases, including diabetes, neurodegenerative disorders, cancer, cardiovascular disease and obesity. To investigate the mechanism of the suppressive effects of EGCG on inflammatory response in macrophages, alterations on the levels of nitric oxide (NO) regulatory factors and inflammatory cytokines were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells. No significant toxicity was detected in RAW264.7 cells treated with 100–400 μM EGCG. Moreover, the optimal concentration of LPS was determined to be 1 μg/ml based on the results of cell viability assay, NO assay and IL-6 enzyme-linked immunsorbent assay (ELISA). Furthermore, NO levels decreased significantly by 68.2% in the 400 μM EGCG/LPS treated group, while the level of inducible nitric oxide synthase (iNOS) expression decreased by 12-17% in the 200 and 400 μM EGCG/LPS treated group. A significant decrease in transcription of pro-inflammatory cytokines (TNF- α and IL-1β) and anti-inflammatory cytokine (IL-10) was also detected in the EGCG/LPS treated group. However, IL-6 transcript and protein was maintained at a constant level when in the LPS treated group relative to the EGCG/LPS treated group. Overall, these results suggest that the differential regulation of inflammatory cytokines is an important factor influencing the suppressive effects of EGCG against LPS-activated inflammatory response in RAW264.7 cells.

Immunomodulatory effect of the water extract of Aster tataricus through mitogen-activated protein kinase signaling pathway (Aster tataricus 물 추출물의 mitogen-activated protein kinase 신호 전달 경로를 통한 면역 조절 효과)

  • Lee, Chea Yeon;Park, Hyo Sung;Kong, Deok-Hoon;Kim, Young Kwan;Cho, Whajung
    • Journal of Nutrition and Health
    • /
    • v.53 no.5
    • /
    • pp.452-463
    • /
    • 2020
  • Purpose: Aster tataricus (AT) is one of the Asteraceae perennial herbs used in traditional Chinese medicine. The herb contains various bioactive substances, such as flavonoids, isoflavonoids, and phenolic compounds in the roots, and exhibits a range of effects including anti-bacterial, anti-oxidant, and anti-inflammatory activities. This study compared the immunomodulatory effects of ethanol and water extracts of whole AT, except the roots, and analyzed the molecular mechanisms for the regulatory effects on cytokine secretion from THP-1 cells. Methods: The effects of AT extract on the cell viability and proliferation of THP-1 cells were analyzed using the Cell Counting Kit-8 method. The concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the cell culture supernatant of the AT-treated THP-1 cells were measured using an enzyme-linked immunosorbent assay. The protein levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), inhibitor of nuclear factor kappa B (IκBα), and mitogen-activated protein kinase (MAPK) phosphorylation in the cell lysates were determined by western blotting. Results: The water extract and the ethanol extract of AT did not affect the cell viability, and increased the proliferation of THP-1 cells significantly compared to the vehicle. The water extract increased the secretion of IL-1β from THP-1 cells in a dose-dependent manner, but the ethanol extract had no effect. The expression of COX-2 and iNOS protein and the phosphorylation of MAPK and Akt were induced in AT-treated cells. In addition, IκBα was degraded by AT in a concentration-dependent manner. IL-1β secretion by AT was reduced by extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors, while TNF-α secretion was decreased by inhibitors of ERK, p38 MAPK, and JNK. Interestingly, the p38 MAPK inhibitor increased the production of IL-1β by AT further. Conclusion: The water extract of the above-ground parts of AT contains immunomodulatory bioactive substances that stimulate immune cells through the MAPK signaling pathway.

Anti-Inflammatory Effect of Ethanol Extract from Grateloupia crispata on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears (LPS로 유도된 RAW 264.7 세포와 마우스 귀 조직에 대한 주름까막살 에탄올 추출물의 항염증 효과)

  • Bae, Nan-Young;Kim, Min-Ji;Kim, Koth-Bong Woo-Ri;Park, Sun-Hee;Jang, Mi-Ran;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1090-1098
    • /
    • 2016
  • The anti-inflammatory effects of ethanol extract from Grateloupia crispata (GCEE) were investigated in lipopolysaccharide (LPS)-stimulated murine macrophages. Anti-inflammatory effects were detected by enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry. There was no cytotoxic effect on proliferation of macrophages treated with GCEE compared to the control. GCEE significantly inhibited production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis $factor-{\alpha}$, and $IL-1{\beta}$] as well as nitric oxide in LPS-stimulated RAW 264.7 cells. In addition, GCEE suppressed expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear $factor-{\kappa}B$ in a dose-dependent manner. GCEE significantly reduced activation of mitogen-activated protein kinases. In the in vivo test, evaluation of anti-inflammatory activity of GCEE was performed using croton oil-induced ear edema in ICR mice. Oral administration of 10 mg/kg to 250 mg/kg of GCEE significantly reduced ear edema in a dose-dependent manner compared to croton oil-induced mice. Moreover, GCEE reduced ear thickness and the number of mast cells compared to croton oil-induced mice in the histological analysis. These data suggest that GCEE could be used as a potential source for anti-inflammatory agents.

Effect of Sunlight, Incandescent, Fluorescent, and Ultraviolet Lights on the Oxidation of Edible Soybean Oil (식용유지(食用油脂)의 산화과정(酸化過程)에 대한 일사광선(日射光線), 백열등광선(白熱燈光線), 형광등광선(螢光燈光線) 및 살균등광선(殺菌燈光線)의 촉진작용(促進作俑) 대하여)

  • Koo, Ja-Hyun;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.178-184
    • /
    • 1971
  • Samples of refined soybean oil were irradiated with lights from a 20-watt incandescent tungsten lamp, a 20-watt fluorescent daylight type lamp, a 20-watt low-pressure mercury vapor germicidal lamp, and direct sunlight for an experimental period of 147 days. Some samples were stored in a dark room throughout the period as a control. The peroxide values of all samples were measured every week. The induction period of the samples was arbitrarily taken as the time required for the samples to reach a peroxide value of 15. The induction period of the control was estimated at 198 days. Those of the samples irradiated with the incandescent light, the fluorescent light, the ultraviolet light, and the sunlight were estimated at 196, 119, 52 and 6 days, respectively. The sunlight showed by far the strongest prooxidant activity whereas the incandescent light showed the weakest but distinct prooxidant activity. The small temperature differences observed among the various samples throughout the experimental period did not seem to affect the oxidation rates of the irradiated samples in any significant way.

  • PDF

노쇠중인 밀 잎에서 scorbate-Glutathione회로 관계 효소의 발달에 대한 Benzyladenine의 효과

  • 장창덕
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.47-54
    • /
    • 1995
  • The present study performed the isolation of cytosolic ascorbate peroxidase (APX) isozymes and analyzed the pattern of their activity development and also investigated the change in some other enzyme activities related to the ascorbate-glutathione pathway from the senescing wheat leaves. The aim of this work is to examine the possibility that in the cytoplasm of wheat leaves the ascorbate-glutathione pathway p!ays a significant role in relation to leaf senescence involving an $H_2O_2$ accumulation and then to show the effect of benzyladenine (BA) on that pathway. During the leaf senescence characterized by increases in ChI breakdown and H202 accumulation under the 4-day dark incubation of matured leaf segments; i) no significant increase of total cytosolic APX was observed, ii) a dehydroascorbate reductase (DHAR) activity was decreased rapidly, iii) a slight increase of glutathione reductase (GR) activity occurred. In the BA-treated leaves; however, i) the total activity of APX increased conspicuously, ii) the decrease of DHAR activity was relatively inhibited, iii) the GR activity increase was more enhanced, and iv) the decrease of ascorbate content and the increase of H202 content were retarded as compared with those of control leaves. Three isozymes of cytosolic APX were found by using a native-electrophoretic gel in senescing wheat leaves and two of them occurred with major activity. In the developmental patterns of cytosolic APX isozymes, only two isozyme bands ("a" and "b") appeared with almost constant activity through 4 days of incubation in the control leaves, while one additional weak isozyme band ("c") and a little increase of "b" isozyme activity were detected in the BA-treated leaves. EspeciaUy, the development of "a" isozyme activity increased remarkably compared with that of control leaves. The increased capacity for peroxide scavenging due to the enhanced activity of all 3 enzymes (APX, DHAR, GR) participating in the ascorbate-glutathione pathway in BA-treated leaves suggested that this pathway might playa significant role in the processes related to the wheat leaf senescence.scence.

  • PDF