Browse > Article
http://dx.doi.org/10.4014/kjmb.1203.03001

Isolation and Characterization of Antifungal Compounds Produced by Bacillus polyfermenticus CJ6 Isolated from Meju  

Yang, Eun-Ju (Department of Food and Nutrition, Kimchi Research Center, Chosun University)
Ma, Seung-Jin (Department of Food Engineering, Mokpo National University)
Chang, Hae-Choon (Department of Food and Nutrition, Kimchi Research Center, Chosun University)
Publication Information
Microbiology and Biotechnology Letters / v.40, no.1, 2012 , pp. 57-65 More about this Journal
Abstract
Antifungal compounds from Bacillus polyfermenticus CJ6 were purified using SPE, preparative HPLC, and reverse phase-HPLC. Antifungal compounds from B. polyfermenticus CJ6 were separated into three fractions (8, B, C) using preparative HPLC. LC/MS analysis of antifungal peaks suggested that B. polyfermenticus CJ6 produces lipopeptides; two kinds of iturin A ($C_{14}$, $C_{15}$), three kinds of surfactins ($C_{13}$, $C_{14}$, $C_{15}$), four kinds of fengycin A ($C_{14}$, $C_{15}$, $C_{16}$, $C_{17}$) and two kinds fengycin B ($C_{16}$, $C_{17}$). The antifungal activity of fraction 8, which was presumed as inturin A, was found to be stable after the pH, heat or proteolytic enzyme treatment, but it was unstable at 50-$70^{\circ}C$ for 24 hr. The antifungal activity of fraction B, which presumed as surfactins and fengycin A, was found to be stable after the heat treatment, but it was unstable in the pH 3.0 and after the protease (type I) or ${\alpha}$-chymotrypsin treatment. The antifungal activity of fraction C, which was presumed as fengycin A and B, was found to be stable in the pH 3.0-9.0 range and the heat treatment, but it was unstable with the treatment of protease (type I). The amino acid composition of the purified peaks 8-1 and 8-2 were Asx, Tyr, Gln, Pro, and Ser in a molar ratio of 3:1:1:1:1, which showed the same amino acid composition as iturin. From these results, we confirmed that antifungal compounds from B. polyfermenticus CJ6 most likely belonged to iturin A as well as surfactins and fengycins. As lipopeptides are known to act in a synergistic manner, the antifungal compounds from B. polyfermenticus CJ6 might have potential uses in biotechnology and biopharmaceutical applications.
Keywords
Bacillus polyfermenticus; antifungal compound; purification; iturin; fengycin; surfactin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, K. M., J. Y. Lee, C. K. Kim, and J. S. Kang. 2009. Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Arch. Pharm. Res. 32: 711-715.
2 Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. -T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Applied. Microbiol. 97: 942-949.
3 Kim, P. I., Ryu, J., Kim, Y. H., Chi, Y. T., 2010. Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtillis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145
4 Lee, K. H., K. D. Jun, W. S. Kim, and H. D. Paik. 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151.
5 Ma, E. L., Y. J. Choi, J. Choi, C. Pothoulakis, S. H. Rhee, and E. Im. 2010. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int. J. Cancer 127: 780-790.
6 Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051.
7 McGrath, M. T. 2001. Fungicide resistance in cucurbit powdery mildew: Experiences and challenges. Plant Dis. 85: 236-245.
8 Nagorska, K., M. Bikowski, and M. Obuchowski. 2007. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol. 54: 495-508.
9 Nihorimbere, V., H. Cawoy, A. Seyer, A. Brunelle, P. Thonart, and M. Ongena. 2011. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 79: 176-191.
10 Ongena M, E. Jourdan, A. Adam, M. Paquot, A. Brans, B. Joris, J. L. Arpigny, P. Thonart. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.
11 Ongena, M. and P. Jacques. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
12 Paulitz, T. C. and R. R. Bélanger. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39: 103-133.
13 Peypoux, F., J. M. Bonmatin, and J. Wallach. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51: 553-563.
14 Pitt, J. I. and A. D. Hocking. 1999. Fungi and Food Spoilage. Aspen Publishers, Gaithersburg, MD, USA.
15 Ryoo, S. W., H. Y. Maeng, and P. J. Maeng. 1996. Purification and characterization of antifungal compounds produced by Bacillus subtilis KS1. Kor. J. Mycol. 24: 293-304.
16 Schallmey, M., A. Singh, and O. P. Ward. 2004. Development in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.
17 Sharma, R. R., D. Singh, and R. Singh. 2009. Biological control of postharvest diseases on fruits and vegetables by microbial antagonists: a review. Biol. Control 50: 205-221.
18 Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
19 Williams, B. H., Y. Hathout, and C. Fenselau. 2002. Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. J. Mass. Spectrom. 37: 259-264.
20 Yang, E. J. and H. C. Chang. 2007. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Kor. J. Microbiol. Biotechnol. 35: 339-346.
21 Chen, H., Wang, L., Su, C. X., Gong, G. H., Wang, P., Yu, Z. L., 2008. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtillis. Lett. Appl. Microbiol. 47: 180-186.
22 Akpa, E., P. Jacques, B. wathelet, M. Paquot, R. Fuchs, H. Budzikiewiez, and P. Thonart. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 91: 551-561.
23 Arguelles-Arias, A., M. Ongena, B. Halimi, Y. Lara, A. Brans, B. Joris, and P. Fickers. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8: 63.
24 Athukorala, S. N. P., W. G. D. Fernando, and K. Y. Rashild. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55: 1021-1032.
25 Chitarra, G. S., P. Breeuwer, M. J. R. Nout, A. C. van Aelst, F. M. Rombouts, and T. Abee. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94: 159-168.
26 FAO(Food and Agriculture Organisation). 2011. Global food Losses and Food Waste. http://www.fao.org/fileadmin/user_upload/ags/publications/GFL_web.pdf
27 Im, E., Y. J. Choi, C. H. Kim, C. Fiocchi, C. Pothoulakis, and S. H. Rhee. 2009. The angiogenic effect of probiotic Bacillus polyfermenticus on human intestinal microvascular endothelial cells is mediated by IL-8. Am. J. Physiol. Gastrointest. Liver Physiol. 297: G999-G1008.
28 Grangemard, I., J. Wallach, and F. Peypoux. 1999. Evidence of surfactin hydrolysis by a bacterial endoprotease. Biotechnol. Lett. 21: 241-244.
29 Grover, M., L. Nain, S. B. singh, and A. K. Saxena. 2010. Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Curr. Microbiol. 60: 99-106.
30 Hoover, D. G. and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp. 23-29. In D. G. Hoover and L. R. Steenson (ed.), Bacteriocin of lactic acid bacteria. Academic Press, San Diego, CA.
31 Jung, J. H. and H. C. Chang. 2009. Antifungal activity of Bacillus polyfermenticus CJ6 isolated from meju. J. Korean Soc. Food Sci. Nutr. 38: 509-516.
32 Jung, J. H. and H. C. Chang. 2009. Bacillus polyfermenticus CJ9, isolated from meju, showing antifungal and antibacterial activities. Kor. J. Microbiol. Biotechnol. 37: 340-349.
33 Kim, D. H., H. K. Kim, K. M. Kim, C. K. Kim, M. H. Jeong, C. Y. Ko, K. H. Moon, and J. S. Kang. 2011. Antibacterial activities of macrolactin A and 7-O-succinyl mactolactin A from Bacillus polyfermenticus KJS-2 against vancomycinresistant Enterococci and methicillin-resistant Staphylococcus aureus. Arch. Pharm. Res. 34: 147-152.
34 Kim, H. S., H. Park, I. Y. Cho, H. D. Paik, and E. Park. 2006. Dietary supplementation of probiotic Bacillus polyfermenticus, Bispan strain, modulates natural killer cell and T cell subset populations and immunoglobulin G levels in human subjects. J. Med. Food 9: 321-327.
35 Kim, H. Y. and T. S. Lee. 2009. Toxicity and characteristics of antifungal substances produced by Bacillus amyloliquefaciens IUB158-03. J. Life Sci. 19: 1672-1678.