• Title/Summary/Keyword: Enzyme%24H_2%24 production

Search Result 197, Processing Time 0.032 seconds

Enzymatic Hydrolysis of Marine Algae Hizikia fusiforme (해조류 톳 (Hizikia fusiforme)의 효소 가수분해)

  • Song, Bu-Bok;Kim, Sung-Koo;Jeong, Gwi-Taek
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.347-351
    • /
    • 2011
  • In this study, we investigated the effect of reaction factors on enzymatic hydrolysis of Hizikia fusiforme, which is brown algae in marine biomass resource, using commercial enzymes. The composition of H. fusiforme is 38.9% of reducing sugar, 4.8% of moisture, 17.8% of ash, and 38.5% of others. In the condition of 1-5% substrate, the increase of substrate concentration enhanced the increase of reducing sugar formation; however, the hydrolysis yield did not increase after 24 h. After reaction of 75 h, conversion yield of reducing sugar were obtained to 16.45%, 17.99%, and 14.55% at 1, 2.5, and 5% substrate, respectively. As a result of effect of enzyme amount, the formation of reducing sugar did not show considerable change at 1% substrate. However, in the condition of 2.5% substrate, the great change of reducing sugar formation was observed by the increase of enzyme amount. The conversion yields of reducing sugar were obtained to 18.77% and 22.83% at 1% and 2.5% substrate with 30% enzyme, respectively. As a result of heat treatment of biomass, the high yield was obtained in 2.5% substrate and the yields were increased to 0.06-7.2% by the heat treatment. This result will provide the basic information for production process of biofuels and chemicals from marine biomass H. fusiforme.

Processing Conditions of Low-Salt Fermented Squid and Its Flavor Components 3. Characterization of Protease Produced by Pseudomonas D2 Isolated from Squid Jeotkal (저염 오징어젓갈 제조 방법 및 향미 성분 3. 오징어젓갈에서 분리한 Pseudomonas D2가 생성하는 Protease의 효소학적 특성)

  • 허성호;이호재;김형선;최성희;김영만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.636-641
    • /
    • 1995
  • Proteolytic activities were compared using three species involving in squid jeotkal fermentation and showing positive reaction upon casein test : Pseudomonas D2, Flavovacterium odoratum and Acinetobacter calcoaceticus. Pseudomonas D2 produced highest activity of protease at 72h when incubated in our own modified medium(polypeptone, 0.5% ; tryptone, 0.5% ; NaCl, 3% ; pH, 7.5). Thus, this specie was selected for the further study. The growth pattern was coincided with the production of protease. Thus purification of protease was proceeded by ethanol precipitation, sephadex G-100 gel filtration, and DEAE sepharose ion exchange chromatography. The purified protease showed highest activity at pH 7.0 and 5$0^{\circ}C$. The enzyme was very stable over the wide ragnes of the temperature ; even with one hour heat treatment at 7$0^{\circ}C$, the enzyme showed substantial amount of the activity toward casein. In addition, the enzyme was stable over the wide range of pH. Molecular weight of the protease was determined to be 17.4 kD by SDS-PAGE.

  • PDF

Purification and Characterization of Manganese Peroxidase of the White-Rot Fungus Irpex lacteus

  • Shin Kwang-Soo;Kim Young Hwan;Lim Jong-Soon
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2005
  • The production of manganese peroxidase (MnP) by Irpex lacteus, purified to electrophoretic homogeneity by acetone precipitation, HiPrep Q and HiPrep Sephacryl S-200 chromatography, was shown to correlate with the decolorization of textile industry wastewater. The MnP was purified 11.0-fold, with an overall yield of $24.3\%$. The molecular mass of the native enzyme, as determined by gel filtration chromatography, was about 53 kDa. The enzyme was shown to have a molecular mass of 53.2 and 38.3 kDa on SDS-PAGE and MALDI-TOF mass spectrometry, respectively, and an isoelectric point of about 3.7. The enzyme was optimally active at pH 6.0 and between 30 and $40^{\circ}C$. The enzyme efficiently catalyzed the decolorization of various artificial dyes and oxidized Mn (II) to Mn (III) in the presence of $H_2O_2$. The absorption spectrum of the enzyme exhibited maxima at 407, 500, and 640 nm. The amino acid sequence of the three tryptic peptides was analyzed by ESI Q- TOF MS/MS spectrometry, and showed low similarity to those of the extracellular peroxidases of other white-rot basidiomycetes.

Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle

  • Tagawa, Shin-ichi;Holtshausen, Lucia;McAllister, Tim A;Yang, Wen Zhu;Beauchemin, Karen Ann
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.479-485
    • /
    • 2017
  • Objective: The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Methods: Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. Results: In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01). The DMD (g/kg DM) of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05) than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm). In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01) and tended to increase (p = 0.09) gas production and decreased (p<0.01) fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH), but consistent with Experiment 2, ENZ addition increased (p<0.01) DMD and gas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. Conclusion: We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.

Production Properties on Extracellular Protease from Chryseobacterium Novel Strain JK1 (Chryseobacterium 속 신종세균 JK1의 세포외 단백질분해효소 생산특성)

  • Lee, Yu-Kyong;Oh, Yong-Sik;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.48-51
    • /
    • 2012
  • A novel Chryseobacterium sp. JK1 strain producing extracellular protease had been isolated from soil. The largest clear zones were observed on nutrient agar plates supplemented with 1% skim milk at $30-35^{\circ}C$ along with the growth of Chryseobacterium sp. JK1. The cell growth of JK1 strain was maximal at 24 h and maximum protease activity was reached up to 560 unit/ml at the stationary phase in liquid culture. In the presence of maltose, glucose or mannitol in Nutrient broth, cells grew well, but protease were produced poorly with lower production yields of 64-77% than in NB broth only. Similarly, the addition of skim milk, beef extract, yeast extract, malt extract or tryptone showed good growth and poor enzyme production. On the contrary, the addition of $(NH_4)_2HPO_4$ or $(NH_4)_2SO_4$ gave poor growth and good enzyme production of 121-146%.

Studies on the Production of $\beta$-Galactosidase by Lactobacillus sporogenes - Production of Extracellular $\beta$- Galactosidase - (Lectobacillus sporogenes에 의한 $\beta$-Galactosidase 생산에 관한 연구 ( I ) -균체외 $\beta$-Galactosidase의 생산 -)

  • 김영만;이정치;정필근;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.59-66
    • /
    • 1983
  • Cultural conditions for the production of extracellar $\beta$-galactosidase by Loctobacillus sporogenes, a spore forming lactic acid bacterium, were investigated with shaken flask and jar fermenter cultures. The fermentation medium giving maximum $\beta$-galactosidase yield was found to consist of 1 % lactose as a carbon source, 1.5% peptone as an organic nitrogen source. 0.2% ammonium sulfate as an inorganic nitrogen source, 0.8% ammonium phosphate dibasic as a phosphorus source, and 0.05% potassium chloride and 0.001% ferric chloride as mineral source. Optimal initial pH of the medium was 7.0 and the highest enzyme excretion was observed after 40 hours of cultivation at 37$^{\circ}C$. In this experiment, the 500$m\ell$ conical flask containing 50-200$m\ell$ of medium was shaken at 140 strokes per minute with 7cm amplitude in a reciprocating shaker. The maximum enzyme value attained was 38 U/$m\ell$ of the culture broth which was found to be slightly higher than the highest intermolecular enzyme activity (30 U/$m\ell$) observed after 24 hours of incubation. In the fermentor culture, the fermentation profile was shown to be similar to that observed in the shaken flask experiment. But the maximum extracellular enzyme activity was 45 U/$m\ell$ to be even higher than the value obtained with the shaken flask culture.

  • PDF

Fungal bioconversion of Korean food wastes for the production of animal feed additive enzymes

  • Jeong, Yun-Seung;Jeong, Sang-Won;Jo, A-Ra;Gwon, Sun-U;Han, Seung-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.529-532
    • /
    • 2001
  • Korean food waste, one of the abundantly available but environmentally problematic organic wastes in Korea, was utilized as solid-substrate by fungal strain Aspergillus niger ATcC 6275 for the production of enzymemixture containing amylase, cellulase and xylanase. The enzyme mixture can be used as high value-added animal feed. Solid-state fermentation method yielded a 84-fold enhancement in xylanase activity compared with submerged fermentation method. The effect of incubation period, incubation temperature, pH of medium, moisture content, inoculum size and enrichment of the medium with nitrogen and carbon sources were observed for optimal production of these enzymes The optimal amylase activity of 33.10 U/g, cellulase activity of 24.41 U/g, xylanase activity of 328.84 U/g were obtained at 8 days incubation with 50%(w/w) soy bean flake, with incubation temperature of $25^{\circ}C$, pH of 6.38, optimal moisture content of 55% and with inoculum size of $3.8{\times}10^6$spore/g. Enzyme activities were enhanced when ImM $CaSO_4$, 2% Malt extract and 2% galactose were added as mineral, nitrogen and carbon enrichment respectively.

  • PDF

Separation and Enzymological Characteristics of Polygalacturonase by Aspergillus sp. (Aspergillus속이 생산하는 Polygalacturonase의 분리 및 특성)

  • 차원섭;김진구;박준희;오상룡;천성숙;조영제
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.570-577
    • /
    • 1995
  • Aspergillus sp. SB-2704 was selected for its strong polygalacturonase activity among various strain of mold found in soil. It was found that production of polygalacturonase reached to maximum when the wheat bran medium containing 1% polypepton, 1% glucose, and 0.2% FeSO4 were cultured for 3 days at 35$^{\circ}C$. Polygalacturonase was purified 20.90 fold from Aspergillus SB-2704. The purification procedures include ammonium sulfate treatment, gel filtration on Sephdex G-150 and DEAE-cellulose ion exchange chromatography. Yield of the enzyme purification was 4.34%. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. When the purified enzyme was applied to SDS-polyacrylamide gel electrophoresis, the molecular weight was estimated to be 36,000. The optimum pH for the enzyme activity was 5.5 and optimum temperature was 5$0^{\circ}C$. The enzyme is stable in acidic condition. The activity of purified enzyme was inhibited by Pb2+, Hg2+ and Ba2+, whereas activated by Cu2+, Mn2+, Mg2+ and Fe2+. The activity of polygalacturonase was inhibited by the treament wit maleic anhydride, iodine, and EDTA. The result indicate the possible involvement of histidine and metal ion at active site.

  • PDF

A Novel Endo-Polygalacturonase from Penicillium oxalicum: Gene Cloning, Heterologous Expression and Its Use in Acidic Fruit Juice Extraction

  • Lu, Bo;Xian, Liang;Zhu, Jing;Wei, Yunyi;Yang, Chengwei;Cheng, Zhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.464-472
    • /
    • 2022
  • An endo-polygalacturonase (endo-PGase) exhibiting excellent performance during acidic fruit juice production would be highly attractive to the fruit juice industry. However, candidate endo-PGases for this purpose have rarely been reported. In this study, we expressed a gene from Penicillium oxalicum in Pichia pastoris. The recombinant enzyme PoxaEnPG28C had an optimal enzyme activity at pH 4.5 and 45℃ and was stable at pH 3.0-6.5 and < 45℃. The enzyme had a specific activity of 4,377.65 ± 55.37 U/mg towards polygalacturonic acid, and the Km and Vmax values of PoxaEnPG28C were calculated as 1.64 g/l and 6127.45 U/mg, respectively. PoxaEnPG28C increased the light transmittance of orange, lemon, strawberry and hawthorn juice by 13.9 ± 0.3%, 29.4 ± 3.8%, 95.7 ± 10.2% and 79.8 ± 1.7%, respectively; it reduced the viscosity of the same juices by 25.7 ± 1.6%, 52.0 ± 4.5%, 48.2 ± 0.7% and 80.5 ± 2.3%, respectively, and it increased the yield of the juices by 24.5 ± 0.7%, 12.7 ± 2.2%, 48.5 ± 4.2% and 104.5 ± 6.4%, respectively. Thus, PoxaEnPG28C could be considered an excellent candidate enzyme for acidic fruit juice production. Remarkably, fruit juice production using hawthorn as an material was reported for the first time.

Production, Purification and Characterization of a Melanin Bleaching Enzyme from Trametes velutina JS18 (Trametes velutina JS18 유래 멜라닌 탈색 효소의 생산, 정제 및 특성)

  • Jeon, Sung-Jong;Kim, Tae-Yun
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.463-470
    • /
    • 2020
  • The JS18 strain was isolated from an old tree forest and produced extracellular enzymes that decolorize synthetic melanin. Phylogenetic analysis, based on the internal transcribed spacer (ITS) sequence, indicate that JS18 belongs to the Trametes velutina species. JS18 demonstrated laccase activity but no manganese peroxidase or lignin peroxidase activity. Batch culture indicated that the melanin decolorization activity of JS18 strain originated from the laccase. Syringic acid and CuSO4 induced maximum laccase production, yielding 98 U/ml laccase activity after cultivation for 7 days at 25℃. T. velutina secretes an extracellular laccase in GYP medium, and this enzyme was purified using (NH4)2SO4 precipitation, Hi-trap Q Sepharose columns and gel filtration. The molecular weight of the purified enzyme was estimated to be 67 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis. This enzyme produced 80% of its melanin decolorization activity within the first 24 h of evaluation in the presence of 1-hydroxybenzotriazole (HBT), while only about 4% of the melanin was decolorized in the absence of the mediator. The greatest decolorization was observed at 1.5 mM/l HBT, which decolorized 81% of the melanin within the first 24 h. The optimum pH and temperature for this decolorization were found to be 5.0 and 37℃, respectively. Our results suggest the possibility of applying HBT induced T. velutina JS18 laccase-catalyzed melanin decolorization.