DOI QR코드

DOI QR Code

A Novel Endo-Polygalacturonase from Penicillium oxalicum: Gene Cloning, Heterologous Expression and Its Use in Acidic Fruit Juice Extraction

  • Lu, Bo (National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences) ;
  • Xian, Liang (National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences) ;
  • Zhu, Jing (Nanning University) ;
  • Wei, Yunyi (Nanning University) ;
  • Yang, Chengwei (Nanning University) ;
  • Cheng, Zhong (Nanning University)
  • Received : 2021.12.13
  • Accepted : 2022.01.05
  • Published : 2022.04.28

Abstract

An endo-polygalacturonase (endo-PGase) exhibiting excellent performance during acidic fruit juice production would be highly attractive to the fruit juice industry. However, candidate endo-PGases for this purpose have rarely been reported. In this study, we expressed a gene from Penicillium oxalicum in Pichia pastoris. The recombinant enzyme PoxaEnPG28C had an optimal enzyme activity at pH 4.5 and 45℃ and was stable at pH 3.0-6.5 and < 45℃. The enzyme had a specific activity of 4,377.65 ± 55.37 U/mg towards polygalacturonic acid, and the Km and Vmax values of PoxaEnPG28C were calculated as 1.64 g/l and 6127.45 U/mg, respectively. PoxaEnPG28C increased the light transmittance of orange, lemon, strawberry and hawthorn juice by 13.9 ± 0.3%, 29.4 ± 3.8%, 95.7 ± 10.2% and 79.8 ± 1.7%, respectively; it reduced the viscosity of the same juices by 25.7 ± 1.6%, 52.0 ± 4.5%, 48.2 ± 0.7% and 80.5 ± 2.3%, respectively, and it increased the yield of the juices by 24.5 ± 0.7%, 12.7 ± 2.2%, 48.5 ± 4.2% and 104.5 ± 6.4%, respectively. Thus, PoxaEnPG28C could be considered an excellent candidate enzyme for acidic fruit juice production. Remarkably, fruit juice production using hawthorn as an material was reported for the first time.

Keywords

Acknowledgement

This work was financially supported by the Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi (2019KY0924), the Doctoral Scientific Research Fund of Nanning University (2021DSRF01), and the Science Foundation of Nanning University (2018XJ42).

References

  1. Willats WGT, Knox JP, Mikkelsen JD. 2006. Pectin: new insights into an old polymer are starting to gel. Trends Food Sci. Technol. 17: 97-104. https://doi.org/10.1016/j.tifs.2005.10.008
  2. Voragen AGJ, Coenen G-J, Verhoef RP, Schols HA. 2009. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 20: 263-275. https://doi.org/10.1007/s11224-009-9442-z
  3. Jayani RS, Saxena S, Gupta R. 2005. Microbial pectinolytic enzymes: a review. Process Biochem. 40: 2931-2944. https://doi.org/10.1016/j.procbio.2005.03.026
  4. John J, Kaimal KKS, Smith ML, Rahman PKSM, Chellam PV. 2020. Advances in upstream and downstream strategies of pectinase bioprocessing: a review. Int. J. Biol. Macromol. 162: 1086-1099. https://doi.org/10.1016/j.ijbiomac.2020.06.224
  5. Xian L, Wang F, Yin X, Feng JX. 2016. Identification and characterization of an acidic and acid-stable endoxyloglucanase from Penicillium oxalicum. Int. J. Biol. Macromol. 86: 512-518. https://doi.org/10.1016/j.ijbiomac.2016.01.105
  6. Kashyap DR, Vohra PK, Chopra S, Tewari R. 2001. Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77: 215-227. https://doi.org/10.1016/S0960-8524(00)00118-8
  7. Lozano JE. 2006. Fruit manufacturing: scientific basis, engineering properties, and deteriorative reactions of technological importance (Food Engineering Series). Springer, New York, USA.
  8. Sauco VG, Herrero M, Hormaza JI. 2014. Tropical and Subtropical Fruits. Horticulture: Plants for people and places, Volume 1.
  9. Cheng Z, Xian L, Chen D, Lu J, Wei YT, Du LQ, et al. 2020. Development of an innovative process for high-temperature fruit juice extraction using a novel thermophilic endo-polygalacturonase from Penicillium oxalicum. Front. Microbiol. 11: 1200. https://doi.org/10.3389/fmicb.2020.01200
  10. Liu GD, Zhang L, Wei XM, Zou G, Qin YQ, Ma L, et al. 2013. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8: e55185. https://doi.org/10.1371/journal.pone.0055185
  11. Cheng Z, Chen D, Lu B, Wei YT, Xian L, Li Y, et al. 2016. A novel acid-stable endo-polygalacturonase from Penicillium oxalicum CZ1028: purification, characterization and application in the beverage industry. J. Microbiol. Biotechnol. 26: 989-998. https://doi.org/10.4014/jmb.1511.11045
  12. Cheng Z, Chen D, Wang QY, Xian L, Lu B, Wei YT, et al. 2017. Identification of an acidic endo-polygalacturonase from Penicillium oxalicum CZ1028 and its broad use in major tropical and subtropical fruit juices production. J. Biosci. Bioeng. 123: 665-672. https://doi.org/10.1016/j.jbiosc.2017.01.013
  13. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  14. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  15. Ishida Y, Kakibuchi K, Hirao Y, Izumori K. 1997. Cloning and characterization of a polygalacturonase-encoding gene from Penicillium janthinellum. J. Ferment. Bioeng. 84: 257-260. https://doi.org/10.1016/S0922-338X(97)82065-X
  16. van Santen Y, Benen JAE, Schroter K-H, Kalk KH, Armand S, Visser J, et al. 1999. 1.68-A crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J. Biol. Chem. 274: 30474-30480. https://doi.org/10.1074/jbc.274.43.30474
  17. Liu MQ, Dai XJ, Bai LF, Xu X. 2014. Cloning, expression of Aspergillus niger JL-15 endo-polygalacturonase A gene in Pichia pastoris and oligo-galacturonates production. Protein Expr. Purif. 94: 53-59. https://doi.org/10.1016/j.pep.2013.10.025
  18. Zhou HX, Li X, Guo MY, Xu QR, Cao Y, Qiao DR, et al. 2015. Secretory expression and characterization of an acidic endopolygalacturonase gene from Aspergillus niger SC323 in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 25: 999-1006. https://doi.org/10.4014/jmb.1501.01024
  19. Yuan P, Meng K, Huang HQ, Shi PJ, Luo HY, Yang PL, et al. 2011. A novel acidic and low-temperature-active endo-polygalacturonase from Penicillium sp. CGMCC 1669 with potential for application in apple juice clarification. Food Chem. 129: 1369-1375. https://doi.org/10.1016/j.foodchem.2011.05.065
  20. Yang J, Luo HY, Li J, Wang K, Cheng HP, Bai YG, et al. 2011. Cloning, expression and characterization of an acidic endopolygalacturonase from Bispora sp. MEY-1 and its potential application in juice clarification. Process Biochem. 46: 272-277. https://doi.org/10.1016/j.procbio.2010.08.022
  21. Rojas NL, Ortiz GE, Baruque DJ, Cavalitto SF, Ghiringhelli PD. 2011. Production of heterologous polygalacturonase I from Aspergillus kawachii in Saccharomyces cerevisiae in batch and fed-batch cultures. J. Ind. Microbiol. Biotechnol. 38: 1437-1447. https://doi.org/10.1007/s10295-010-0929-9
  22. Tu T, Meng K, Huang HQ, Luo HY, Bai YG, Ma R, et al. 2014. Molecular characterization of a thermophilic endo-polygalacturonase from Thielavia arenaria XZ7 with high catalytic efficiency and application potential in the food and feed industries. J. Agr. Food Chem. 62: 12686-12694. https://doi.org/10.1021/jf504239h
  23. Sassi AH, Tounsi H, Trigui-Lahiani H, Bouzouita R, Romdhane ZB, Gargouri A. 2016. A low-temperature polygalacturonase from P. occitanis: characterization and application in juice clarification. Int. J. Biol. Macromol. 91: 158-164. https://doi.org/10.1016/j.ijbiomac.2016.05.075
  24. Li YQ, Wang Y, Tu T, Zhang DD, Ma R, You S, et al. 2017. Two acidic, thermophilic GH28 polygalacturonases from Talaromyces leycettanus JCM 12802 with application potentials for grape juice clarification. Food Chem. 237: 997-1003. https://doi.org/10.1016/j.foodchem.2017.06.037
  25. Tan HD, Yang GJ, Chen W, Liu QS, Li KK, Yin H. 2020. Identification and characterization of thermostable endopolygalacturonase II B from Aspergillus luchuensis. J. Food Biochem. 44: e13133.
  26. Tu T, Meng K, Bai YG, Shi PJ, Luo HY, Wang YR, et al. 2013. High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. Food Chem. 141: 2974-2981. https://doi.org/10.1016/j.foodchem.2013.05.132
  27. Wang JJ, Zhang YH, Qin X, Gao LY, Han B, Zhang DQ, et al. 2017. Efficient expression of an acidic endo-polygalacturonase from Aspergillus niger and its application in juice production. J. Agr. Food Chem. 65: 2730-2736. https://doi.org/10.1021/acs.jafc.6b05109
  28. Kant S, Vohra A, Gupta R. 2013. Purification and physicochemical properties of polygalacturonase from Aspergillus niger MTCC 3323. Protein Exp. Purif. 87: 11-16. https://doi.org/10.1016/j.pep.2012.09.014
  29. Juwon AD, A AF, Kayode OA. 2012. Purification, characterization and application of polygalacturonase from Aspergillus niger CSTRF. Malaysian J. Microbiol. 8: 175-183.
  30. Dinu D, Nechifor MT, Stoian G, Costache M, Dinischiotu A. 2007. Enzymes with new biochemical properties in the pectinolytic complex produced by Aspergillus niger MIUG 16. J. Biotechnol. 131: 128-137. https://doi.org/10.1016/j.jbiotec.2007.06.005
  31. Guo CT, Xue WM, Chen TB, Deng WH, Rao PF. 2002. Purification and partial characterization of an endo-polygalacturonase from Aspergillus niger. J. Food Biochem. 26: 253-265. https://doi.org/10.1111/j.1745-4514.2002.tb00855.x
  32. Singh SA, Rao AGA. 2002. A simple fractionation protocol for, and a comprehensive study of the molecular properties of, two major endopolygalacturonases from Aspergillus niger. Biotechnol. Appl. Biochem. 35: 115-123. https://doi.org/10.1042/BA20010077
  33. Munir M, Abdullah R, Haq IU, Kaleem A, Iqtedar M, Ashraf S. 2020. Purification, characterization, kinetics and thermodynamic analysis of polygalacturonase from Aspergillus tamarii for industrial applications. Rev. Mex. Ing. Quim. 19: 293-304. https://doi.org/10.24275/rmiq/Bio1753
  34. Massa C, Degrassi G, Devescovi G, Venturi V, Lamba D. 2007. Isolation, heterologous expression and characterization of an endopolygalacturonase produced by the phytopathogen Burkholderia cepacia. Protein Exp. Purif. 54: 300-308. https://doi.org/10.1016/j.pep.2007.03.019
  35. Tounsi H, Sassi AH, Romdhane ZB, Lajnef M, Dupuy J-W, Lapaillerie D, et al. 2016. Catalytic properties of a highly thermoactive polygalacturonase from the mesophilic fungus Penicillium occitanis and use in juice clarification. J. Mol. Catal. B-Enzym. 127: 56-66. https://doi.org/10.1016/j.molcatb.2016.02.012
  36. Pan X, Li K, Ma R, Shi PJ, Huang HQ, Yang PL, et al. 2015. Biochemical characterization of three distinct polygalacturonases from Neosartorya fischeri P1. Food Chem. 188: 569-575. https://doi.org/10.1016/j.foodchem.2015.05.022
  37. Gundogdu M, Ozrenk K, Ercisli S, Kan T, Kodad O, Hegedus A. 2014. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 47: 21. https://doi.org/10.1186/0717-6287-47-21
  38. Byaruagaba-Bazirake GW, Ransburg PV, Kyamuhangire W. 2012. Characteristics of enzyme-treated banana juice from three cultivars of tropical and subtropical Africa. Afr. J. Food Sci. Technol. 3: 277-290.
  39. Ali ZM, Chin LH, Lazan H. 2004. A comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits. Plant Sci. 167: 317-327. https://doi.org/10.1016/j.plantsci.2004.03.030
  40. Xu H, Zhang PF, Zhang YC, Liu ZB, Zhang XB, Li ZM, et al. 2020. Overexpression and biochemical characterization of an Endo-α-1,4-polygalacturonase from Aspergillus nidulans in Pichia pastoris. Int. J. Mol. Sci. 21: 2100. https://doi.org/10.3390/ijms21062100
  41. Zhu SY, Xu Y, Yu XW. 2020. Improved homologous expression of the acidic lipase from Aspergillus niger. J. Microbiol. Biotechnol. 30: 196-205. https://doi.org/10.4014/jmb.1906.06028
  42. Kumar S, Sharma HK, Sarkar BC. 2011. Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci. Biotechnol. 20: 1289-1298. https://doi.org/10.1007/s10068-011-0178-3
  43. Jeong EB, Kim SA, Shin KC, Oh DK. 2020. Biotransformation of protopanaxadiol-type ginsenosides in Korean ginseng extract into food-available compound K by an extracellular enzyme from Aspergillus niger. J. Microbiol Biotechnol. 30: 1560-1567. https://doi.org/10.4014/jmb.2007.07003
  44. Kondaveeti S, Pagolu R, Patel SKS, Kumar A, Bisht A, Das D, et al. 2019. Bioelectrochemical detoxification of phenolic compounds during enzymatic pre-treatment of rice straw. J. Microbiol. Biotechnol. 29: 1760-1768. https://doi.org/10.4014/jmb.1909.09042
  45. Barman S, Sit N, Badwaik LS, Deka SC. 2015. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. J. Food Sci. Technol. 52: 3579-3589. https://doi.org/10.1007/s13197-014-1413-8
  46. Yang C, Wang JH, Chio CL, Chen XT, Zhang L, Zhang JN, et al. 2020. Low-cost recycling production of pectinase to increase the yield and quality of Muzao jujube juice by Aspergillus niger. Biofuel. Bioprod. Bioref. 14: 104-116. https://doi.org/10.1002/bbb.2053
  47. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25: 221-231. https://doi.org/10.1038/nbt1282