• Title/Summary/Keyword: Enzyme%24H_2%24 production

Search Result 197, Processing Time 0.024 seconds

Effects of Morus alba L. and Natural Products Including Morusin on In Vivo Secretion and In Vitro Production of Airway MUC5AC Mucin

  • Lee, Hyun Jae;Ryu, Jiho;Park, Su Hyun;Woo, Eun-Rhan;Kim, A Ryun;Lee, Sang Kook;Kim, Yeong Shik;Kim, Ju-Ock;Hong, Jang-Hee;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.2
    • /
    • pp.65-72
    • /
    • 2014
  • Background: It is valuable to find the potential activity of regulating the excessive mucin secretion by the compounds derived from various medicinal plants. We investigated whether aqueous extract of the root bark of Morus alba L. (AMA), kuwanon E, kuwanon G, mulberrofuran G, and morusin significantly affect the secretion and production of airway mucin using in vivo and in vitro experimental models. Methods: Effect of AMA was examined on hypersecretion of airway mucin in sulfur dioxide-induced acute bronchitis in rats. Confluent NCI-H292 cells were pretreated with ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G, or morusin for 30 minutes and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 hours. The MUC5AC mucin secretion and production were measured by enzyme-linked immunosorbent assay. Results: AMA stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; aqueous extract, ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G and morusin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. Conclusion: These results suggest that extract of the root bark and the natural products derived from Morus alba L. can regulate the secretion and production of airway mucin and, at least in part, explains the folk use of extract of Morus alba L. as mucoregulators in diverse inflammatory pulmonary diseases.

Changes in physicochemical characteristics of porcine blood under various conditions of enzyme hydrolysis (효소분해조건에 따른 돈혈의 식품학적 품질 특성 변화)

  • Park, Joo Young;Kim, Mi-Yeon;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.413-421
    • /
    • 2016
  • The aim of this study was to investigate physicochemical properties of porcine blood hydrolyzed by proteases under various conditions for utilization as a food source. Five kinds of proteases (Alcalase, Neutrase, Protex-40L, PTPF-1430, and KMFP-15) were tested at different concentrations (0.1, 0.2, and 0.3%, w/v) during hydrolysis at 55 for 4 hr. Hydrolysis with $^{\circ}C$ KMFP-15 showed the lowest pH by 7.3. The highest soluble solid ($24.3^{\circ}Brix$) and free amino acid (4,944 mg%) contents were obtained by hydrolysis with KMFP-15 (w/v) at 0.2% addition level, which was not significantly different from the sample hydrolyzed at 0.3% level. Under the optimal condition of KMFP-15 at 0.2%, porcine blood was hydrolyzed at 60 up to 8 hr. The $^{\circ}C$ free amino acid content reached the highest at 4 hr, and then decreased with longer hydrolysis time. Under the optimal hydrolysis conditions, porcine blood hydrolysis powder had plenty of crude proteins, amino acids, and minerals, including iron, potassium, and zinc. The results showed that porcine blood could be utilized as an useful source of food supplement. The optimum conditions of hydrolyzing porcine blood, using 0.2 KMFP at $60^{\circ}C$ for 4 hr, can be used in the commercial production of protein supplements, amino acid sources, and iron fortifying agents.

Quality characteristics and physiological activities of mulberry (Morus alba) vinegar (오디 식초의 품질 특성 및 생리활성)

  • Eun Jung Yim;Seung Wha Jo;Hyeon Jin Kang;Hyo Bin Oh;Young-Soo Kim;Do-Youn Jeong
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.691-702
    • /
    • 2023
  • This study aimed to develop high value-added mulberry (Morus alba) vinegar by fermenting mulberry with yeast and acetic acid bacteria, for using it in various foods. To select the optimal strain for mulberry fermentation, different strains were tested and Saccharomyces cerevisiae SRCM101756 and Acetobacter pasteurianus SRCM102419, exhibiting excellent alcohol and acetic acid production ability during mulberry fermentation, were selected for fermentation. Mulberry vinegar was prepared using mulberry wine and the selected acetic acid bacteria, and the physicochemical properties and physiological effects were measured. The pH was 2.98 and total acidity was 4.70% by day 9 of fermentation, establishing the possibility of developing them into vinegars for industrial use. The angiotensin-glucosidase inhibition activity of mulberry vinegar increased from 13.22% to 19.19% in the 100-fold dilution, and from 42.35% to 46.11% in the 50-fold dilution, from before fermentation to after fermentation, respectively. The angiotensin-converting enzyme inhibition activity of mulberry vinegar was found to significantly increase from 44.82% before fermentation to 63.88% after fermentation in the 25-fold dilution. Moreover, a significant increase in pancreatic lipase inhibition activity after fermentation was observed. Thus, mulberry vinegar can be used as a functional material in vinegar and other foods.

Purification and Characterization of a Thermostable Xylanase from Paenibacillus sp. NF1 and its Application in Xylooligosaccharides Production

  • Zheng, Hong-Chen;Sun, Ming-Zhe;Meng, Ling-Cai;Pei, Hai-Sheng;Zhang, Xiu-Qing;Yan, Zheng;Zeng, Wen-Hui;Zhang, Jing-Sheng;Hu, Jin-Rong;Lu, Fu-Ping;Sun, Jun-She
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.489-496
    • /
    • 2014
  • High levels of extracellular xylanase activity (211.79 IU/mg) produced by Paenibacillus sp. NF1 were detected when it was submerged-cultured. After three consecutive purification steps using Octyl-Sepharose, Sephadex G75, and Q-Sepharose columns, a thermostable xylanase (XynNF) was purified to homogeneity and showed a molecular mass of 37 kDa according to SDS-PAGE. The specific activity of the purified XynNF was up to 3,081.05 IU/mg with a 14.55-fold purification. The activity of XynNF was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Fe^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $Cu^{2+}$, SDS, and EDTA. The purified XynNF displayed a greater affinity for oat spelt xylan with the maximal enzymatic activity at $60^{\circ}C$ and pH 6.0. XynNF, which was shown to be cellulose-free, with high stability at high temperature ($70^{\circ}C-80^{\circ}C$) and low pH range (pH 4.0-7.0), is potentially valuable for various industrial applications. The enzyme hydrolyzed oat spelt xylan to yield mainly xylooligosaccharides (95.8%) of 2-4 degree of polymerization (DP2-4). Moreover, the majority of the xylooligosacharides (DP2-4) products was xylobiose (61.5%). The thermostable xylanase (XynNF) thus seems potentially usefull in the production of xylooligosaccharides.

Development of Indole-3-Acetic Acid-Producing Escherichia coli by Functional Expression of IpdC, AspC, and Iad1

  • Romasi, Elisa Friska;Lee, Jinho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1726-1736
    • /
    • 2013
  • Biosynthesis of indole-3-acetic acid (IAA) via the indole-3-pyruvic acid pathway involves three kinds of enzymes; aminotransferase encoded by aspC, indole-3-pyruvic acid decarboxylase encoded by ipdC, and indole-3-acetic acid dehydrogenase encoded by iad1. The ipdC from Enterobacter cloacae ATCC 13047, aspC from Escherichia coli, and iad1 from Ustilago maydis were cloned and expressed under the control of the tac and sod promoters in E. coli. According to SDS-PAGE and enzyme activity, IpdC and Iad1 showed good expression under the control of $P_{tac}$, whereas AspC was efficiently expressed by $P_{sod}$ originating from Corynebacterium glutamicum. The activities of IpdC, AspC, and Iad1 from the crude extracts of recombinant E. coli Top 10 were 215.6, 5.7, and 272.1 nmol/min/mg-protein, respectively. The recombinant E. coli $DH5{\alpha}$ expressing IpdC, AspC, and Iad1 produced about 1.1 g/l of IAA and 0.13 g/l of tryptophol (TOL) after 48 h of cultivation in LB medium with 2 g/l tryptophan. To improve IAA production, a tnaA gene mediating indole formation from tryptophan was deleted. As a result, E. coli IAA68 with expression of the three genes produced 1.8 g/l of IAA, which is a 1.6-fold increase compared with wild-type $DH5{\alpha}$ harboring the same plasmids. Moreover, the complete conversion of tryptophan to IAA was achieved by E. coli IAA68. Finally, E. coli IAA68 produced 3.0 g/l of IAA after 24 h cultivation in LB medium supplemented with 4 g/l of tryptophan.

Characterization of a Thermostable Lichenase from Bacillus subtilis B110 and Its Effects on β-Glucan Hydrolysis

  • Huang, Zhen;Ni, Guorong;Wang, Fei;Zhao, Xiaoyan;Chen, Yunda;Zhang, Lixia;Qu, Mingren
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.484-492
    • /
    • 2022
  • Lichenase is an enzyme mainly implicated in the degradation of polysaccharides in the cell walls of grains. Emerging evidence shows that a highly efficient expression of a thermostable recombinant lichenase holds considerable promise for application in the beer-brewing and animal feed industries. Herein, we cloned a lichenase gene (CelA203) from Bacillus subtilis B110 and expressed it in E. coli. This gene contains an ORF of 729 bp, encoding a protein with 242 amino acids and a calculated molecular mass of 27.3 kDa. According to the zymogram results, purified CelA203 existed in two forms, a monomer, and a tetramer, but only the tetramer had potent enzymatic activity. CelA203 remained stable over a broad pH and temperature range and retained 40% activity at 70℃ for 1 h. The Km and Vmax of CelA203 towards barley β-glucan and lichenan were 3.98 mg/ml, 1017.17 U/mg, and 2.78 mg/ml, 198.24 U/mg, respectively. Furthermore, trisaccharide and tetrasaccharide were the main products obtained from CelA203-mediated hydrolysis of deactivated oat bran. These findings demonstrate a promising role for CelA203 in the production of oligosaccharides in animal feed and brewing industries.

The Antihypertensive and Vasodilating Effects of Adventitious Root Extracts of Wild Ginseng (산삼 배양근 추출물의 혈압강화 및 혈관이완 효과)

  • Hong, Min-Hee;Lim, Hee-Kyoung;Park, Ji-Eun;Jun, Neung-Jae;Lee, Young-Jae;Cho, Moon-Jae;Kim, So-Mi
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.102-107
    • /
    • 2008
  • Nitric oxide (NO) is a potent antihypertensive and vasodilator which plays an important role in regulating vascular tones. In this study, we investigated the effects of adventitious root extracts of wild ginseng on NO production and NO linked physiological activities. When human endothelial cell line (ECV304) was incubated with either water extracts of wild ginseng adventitious root (WE) or aqueous fraction of butanol extracts of wild ginseng adventitious root (ABE), considerable amounts of NO were released by the cells. The level of endothelial nitric oxide synthase (eNOS) expression was unchanged and about 6% of the angiotensin converting enzyme (ACE) was inhibited with treatment of ABE. The vasodilating activities of pulmonary artery rings in response to different doses of extracts were shown as 44.8% and 91.3% in 2.5 mg/ml WE and 0.1 mg/ml ABE, respectively. The blood pressure lowering effect was observed from the oral administered spontaneously hypertensive rat (SHR) with the lowest blood pressure (154.5${\pm}$8.6 mmHg) after 8 h. The blood pressure was recovered to the initial level after 24 h.

The Ethylacetate Extract of North Kangwhal(Ostericum koreanum) Attenuates the Inflammatory Responses in PMA/A23187-stimulated Mast Cells (북강활 에틸아세테이트분획의 비만세포에서의 염증반응 억제효과)

  • Seo, Un-Kyo;Lee, Ju-Il;Park, Jun-Hong;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.23 no.4
    • /
    • pp.81-89
    • /
    • 2008
  • Objectives: In this study, the pharmacological effects of the ethylacetate extract of Ostericum koreanum(North Kangwhal; NK) on allergic inflammation were investigated in activated human mast cells. Methods: North Kangwhal was extracted with 80% methanol for 24 h, and then fractionated with ethylacetate(NK-EtOAc extract). HMC-1 cells, an human mast line, were pre-incubated with different concentrations of NK-EtOAc extract for 30 min, and then stimulated with PMA(50 nM/ml) and A23187($1{\mu}M/ml$) at indicated times. The cell toxicity was determined by MTT assay. The concentrations of prostaglandin E2(PGE2) and cytokines(TNF-${\alpha}$, IL-8) were measured by enzyme-linked immunosorbant assay. Results: NK-EtOAc extract($10{\sim}50{\mu}g/ml$) significantly inhibited the productions of $PGE_2$, TNF-${\alpha}$ and IL-8 in PMA/A23187-stimulated HMC-1 cells without cell toxicity($0{\sim}50{\mu}g/ml$). NK-EtOAc extract also inhibited PMA/A23187-induced phosphorylation of ERK1/2 MAPK and the NF-${\kappa}B$ p65 subunit translocation into the nuclear of HMC-1 cells. Conclusions: This study suggests that NK-EtOAc extract may have an anti-inflammatory property through suppressing the production of inflammatory mediators in activated mast cells and its molecular mechanism underlies the blocking of NF-${\kappa}B$ pathway.

  • PDF

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Concentrations of Calcium-binding Protein and Bone Gla-protein in Culture Medium and CaBP mRNA Expression in Osteoblasts of Broiler Chickens

  • Guo, Xiaoyu;Yan, Sumei;Shi, Binlin;Feng, Yongmiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.239-245
    • /
    • 2011
  • This study was conducted to determine the effects of excess vitamin A on alkaline phosphatase (ALP) activity, contents of calcium-binding protein (CaBP), bone gla-protein (BGP) in culture medium and CaBP mRNA expression in chicken osteoblasts in vitro. Osteoblastic cells in the tibia from 1-day-old Arbor Acre broiler chickens were isolated using enzyme digestion. The subconfluenced cells were divided into eight treatments with six replicates in each treatment and cultured in a medium containing either vehicle or different levels of vitamin A (0, 0.2, 0.6, 1.0, 2.0, 5.0, 10.0 and $20.0\;{\mu}g$/ml), and the control received an equivalent volume of ethanol. The incubation lasted 48 h. The results showed that vitamin A down-regulated ALP activity in the culture medium as well as CaBP mRNA expression of osteoblasts in a linear dose-dependent manner (p = 0.124 and p<0.10, respectively), and suppressed the contents of BGP and CaBP in the culture medium in a quadratic dose-dependent manner (p<0.05 and p<0.10, respectively) with increasing addition of vitamin A. The addition of 0-$0.2\;{\mu}g$/ml vitamin A to the culture medium increased ALP activity, BGP and CaBP contents as well as CaBP mRNA expression compared with other groups, but positive effects of vitamin A tended to be suppressed when vitamin A was increased to $1.0\;{\mu}g$/ml, and adverse effects occurred when vitamin A was increased to 10.0-$20.0\;{\mu}g$/ml. These results implied that there was a threshold level of vitamin A inclusion beyond which inhibitory effects occurred, and the mechanism by which overdose of vitamin A reduced bone growth in chickens was probably reduced osteoblastic cell activity, and inhibited expression of CaBP mRNA and CaBP secretion.