Browse > Article
http://dx.doi.org/10.4014/jmb.2111.11017

Characterization of a Thermostable Lichenase from Bacillus subtilis B110 and Its Effects on β-Glucan Hydrolysis  

Huang, Zhen (Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University)
Ni, Guorong (College of Land Resources and Environment, Jiangxi Agricultural University)
Wang, Fei (College of Bioscience and Bioengineering, Jiangxi Agricultural University)
Zhao, Xiaoyan (College of Bioscience and Bioengineering, Jiangxi Agricultural University)
Chen, Yunda (College of Bioscience and Bioengineering, Jiangxi Agricultural University)
Zhang, Lixia (College of Bioscience and Bioengineering, Jiangxi Agricultural University)
Qu, Mingren (Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.4, 2022 , pp. 484-492 More about this Journal
Abstract
Lichenase is an enzyme mainly implicated in the degradation of polysaccharides in the cell walls of grains. Emerging evidence shows that a highly efficient expression of a thermostable recombinant lichenase holds considerable promise for application in the beer-brewing and animal feed industries. Herein, we cloned a lichenase gene (CelA203) from Bacillus subtilis B110 and expressed it in E. coli. This gene contains an ORF of 729 bp, encoding a protein with 242 amino acids and a calculated molecular mass of 27.3 kDa. According to the zymogram results, purified CelA203 existed in two forms, a monomer, and a tetramer, but only the tetramer had potent enzymatic activity. CelA203 remained stable over a broad pH and temperature range and retained 40% activity at 70℃ for 1 h. The Km and Vmax of CelA203 towards barley β-glucan and lichenan were 3.98 mg/ml, 1017.17 U/mg, and 2.78 mg/ml, 198.24 U/mg, respectively. Furthermore, trisaccharide and tetrasaccharide were the main products obtained from CelA203-mediated hydrolysis of deactivated oat bran. These findings demonstrate a promising role for CelA203 in the production of oligosaccharides in animal feed and brewing industries.
Keywords
Bacillus subtilis; lichenase; expression; characterization; oligosaccharide; ${\beta}-glucan$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Buckeridge MS, Vergar CE, Carpita NC. 1999. The mechanism of synthesis of a mixed-linkage (1→3), (1→4)beta-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol. 120: 1105-1116.   DOI
2 Boyce A, Walsh G. 2007. Production, purification and application relevant characterization of an endo-1,3(4)-β-glucanase from Rhizomucor miehei. Appl. Microbiol. Biotechnol. 76: 835-841.   DOI
3 Qiao J, Dong B, Li Y, Zhang B, Cao Y. 2009. Cloning of a beta-1,3-1,4-glucanase 448 gene from Bacillus subtilis MA139 and its functional expression in Escherichia 449 coli. Appl. Microbiol. Biotechnol. 152: 334-342.
4 Li M, Li G, Zhu L, Yin Y, Zhao X, Xiang C, et al. 2014. Isolation and characterization of an agaro-oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals. PLoS One 9: e911063.
5 Yan Q, Yang H, Jiang Z, Liu E, Yang S. 2018. A novel thermostable β-1,3-1,4-glucanase from Thermoascus aurantiacus and its application in oligosaccharide production from oat bran. Carbohydr. Res. 469: 31-37.   DOI
6 Wood PJ, Weisz J, Blackwell BA. 1994. Structural studies of (1→3), (1→4)-beta-d-glucans by C(13)-nuclear magnetic-resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem. 71: 301-307.
7 McCarthy T, Hanniffy O, Savage A, Tuohy MG. 2003. Catalytic properties and mode of action of three endo-β-glucanases from Talaromyces emersonii on soluble β-1,4- and β-1,3-1,4-linked glucans. Int. J. Biol. Macromol. 33: 141-148.   DOI
8 Hasamudin WHW, Kennedy JF. 1994. Chemistry and biology of 1,3-β-glucans. Carbohydr. Polym. 25: 61-62.   DOI
9 Elgharbi F, Hlima HB, Ameri R, Bejari S, Hmida-Sayari A. 2017. A trimeric and thermostable lichenase from B. pumilus US570 strain: biochemical and molecular characterization. Int. J. Biol. Macromol. 95: 273-280.   DOI
10 Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K. 2005. A novel β-glucanase gene from Bacillus halodurans C-125. FEMS Microbiol. Lett. 248: 9-15.   DOI
11 Sameh M, Claire M, Nabil M, Semia EC, Magali RS. 2015. A highly thermostable lichenase from Bacillus sp. UEB-S: biochemical and molecular characterization. J. Mol. Catal. B: Enzym. 115: 8-12.   DOI
12 Mao S, Lu Z, Zhang C, Lu F, Bie X. 2013. Purification, characterization, and heterologous expression of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9. Appl. Biochem. Biotechnol. 169: 960-975.   DOI
13 Wang J, Niu C, Liu X, Qi L. 2014. Characterization of a New 1,3-1,4-β-glucanase gene from Bacillus tequilensis CGX5-1. Appl. Biochem. Biotechnol. 173: 826-837.   DOI
14 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
15 Furtado GP, Ribeiro LF, Santos CR, et al. 2011. Biochemical and structural characterization of a β-1,3-1,4-glucanase from Bacillus subtilis 168. Process Biochem. 46: 1202-1206.   DOI
16 Chaari F, Fendri LB, Blibech M, Driss D. 2014. Biochemical characterization of a lichenase from Penicillium occitanis Pol6 and its potential application in the brewing industry. Process Biochem. 49: 1040-1046.   DOI
17 Liu X, Jiang Z, Ma S, Yan Q, Chen Z, Liu H. 2020. High-level production and characterization of a novel β-1,3-1,4-glucanase from Aspergillus awamori and its potential application in the brewing industry. Process Biochem. 92: 252-260.   DOI
18 Elgharbi F, Hmida-Sayari A, Sahnoun M, Kammoun R, Jlaeil L, Hassairi H, et al. 2013. Purification and biochemical characterization of a novel thermostable lichenase from Aspergillus niger US368. Carbohydr. Polym. 98: 967-975.   DOI
19 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
20 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
21 Murraya PG, Grassickb A, Laffeya CD, Cuffeb MM, Higginsb T, Savageb AV, et al. 2001. Isolation and characterization of a thermostable endo-β-glucanase active on 1,3-1,4-β-d-glucans from the aerobic fungus Talaromyces emersonii cBs 814.70. Enzyme Microb. Technol. 29: 90-98.   DOI
22 Kim KH, Kim YO, Ko BS, Youn HJ, Lee DS. 2004. Over-expression of the gene (bglBC1) from Bacillus circulans encoding an endo-b-(1->3), (1->4)-glucanase useful for the preparation of oligosaccharides from barley β-glucan. Biotechnol. Lett. 26: 1749-1755.   DOI
23 Murphy N, McConnell DJ, Cantwell BA. 1984. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme beta-glucanase. Nucleic Acids Res. 13: 355-5367.   DOI
24 Cerda LA, Valenzuela SV, Diaz P, Pastor FIJ. 2016. New GH16 β-glucanase from Paenibacillus barcinonensis BP-23 releases a complex pattern of mixed-linkage oligomers from barley glucan. Biotechnol. Appl. Biochem. 63: 51-56.   DOI
25 Lloberas J, Perez-Pons JA, Querol E. 2010. Molecular cloning, expression and nucleotide sequence of the endo-beta-1,3-1,4-D-glucanase gene from Bacillus licheniformis, Predictive structural analyses of the encoded polypeptide. Eur. J. Biochem. 197: 337-343.   DOI
26 Borriss R, Buettner K, Maentsaelae P. 1990. Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases. Mol. Gen. Genet. 222: 278-283.   DOI
27 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
28 Gosalbes MJ, Perez-Gonzalez JA, Gonzalez R, Navarro A. 1991. Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. J. Bacteriol. 173: 7705-7710.   DOI
29 Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U. 2006. Structural basis for the substrate specificity of a bacillus 1,3-1,4-β-glucanase. J. Mol. Biol. 357: 1211-1225.   DOI
30 Schimming S, Schwarz WH, Staudenbauer WL. 1991. Properties of a thermoactive beta-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 177: 447-452.   DOI
31 Sun J, Wang H, Lv W, Ma C, Lou Z, Yao H, et al. 2012. Cloning and expression of a thermostable β-1,3-1,4-glucanase from Bacillus amyloliquefaciens ATCC 23350. Ann. Microbiol. 62: 1235-1242.   DOI
32 Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, et al. 2002. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim. Biophys. Acta 1570: 174-180.   DOI
33 Kaiser D, Manoil C, Dworkin M. 1979. Myxobacteria: cell interactions, genetics, and development. Annu. Rev. Microbiol. 33: 595-639.   DOI
34 Chaari F, Bhiri F, Blibecha M, Maktouf S, Ellouz-Chaabouni S, Ellouz-Ghorbel R. 2012. Potential application of two thermostable lichenases from a newly isolated Bacillus licheniformis UEB CF: purification and characterization. Process Biochem. 47: 509-516.   DOI
35 Elgharbi F, Hlima HB, Ameri R, Bejar S, Hmida-Sayari A. 2017. A trimeric and thermostable lichenase from B. pumilus US570 strain: biochemical and molecular characterization. Int. J. Biol. Macromol. 95: 273-280.   DOI
36 Niu C, Liu C, Li Y. 2018. Production of a thermostable 1,3-1,4-β-glucanase mutant in Bacillus subtilis WB600 at a high fermentation capacity and its potential application in the brewing industry. Int. J. Biol. Macromol. 107: 28-34.   DOI
37 Zhang B, Liu Y, Yang H, Yan Q, Yang S, Jiang ZQ, et al. 2017. Biochemical properties and application of a novel β-1,3-1,4-glucanase from Paenibacillus barengoltzii. Food Chem. 234: 68-75.   DOI
38 Yan Q, Yang H, Jiang Z, Liu E, Yang S. 2018. A novel thermostable β-1,3-1,4-glucanase from Thermoascus aurantiacus and its application in oligosaccharide production from oat bran. Carbohydr. Res. 469: 31-37.   DOI
39 Hofemeister J, Kurtz A, Borriss R, Knowles J. 1986. The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. Gene 49: 177-187.   DOI
40 Bhattarai Y, Kashyap PC. 2016. Agaro-oligosaccharides: a new frontier in the fight against colon cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 310: 335-336.
41 Hughes SA, Shewry PR, Gibson GR, McCleary BV, Rastall RA. 2008. In vitro fermentation of oat and barley derived β-glucans by human faecal microbiota. FEMS Microbiol. Ecol. 64: 482-493.   DOI
42 Planas A. 2000. Bacterial 1,3-1,4-beta-glucanases: structure, function and protein engineering. Biochim. Biophys. Acta 1543: 361-382.   DOI
43 Flint HJ, Martin J, Mcpherson CA, Daniel AS, Zhang JX. 1993. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175: 2943-2951.   DOI
44 Anish R, Rao M. 2007. Biochemical characterization of a novel β-1,3-1,4 glucan 4-glucanohydrolase from Thermomonospora sp. having a single active site for lichenan and xylan. Biochimie 89: 1489-1497.   DOI
45 Ontanon OM, Ghio S, Villegas RMD, Garrido MM, Talia PM., Feher C, et al. 2019. A thermostable GH8 endoglucanase of Enterobacter sp. R1 is suitable for β-glucan deconstruction. Food Chem. 298: 124999.   DOI
46 Beur H, Na, Jung WK, Jeong YS, Kim HJ, Kim SK, et al. 2015. Characterization of a GH family 8 β-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol. Lett. 37: 643-655.   DOI
47 James, Arthur E, Fare, Godfrey, Sagar, Brian F, et al. 1975. β-1,4/β-1,3-glucanase. United States Patent. 3880742.