• Title/Summary/Keyword: Enzymatic yield

Search Result 340, Processing Time 0.032 seconds

Enzymatic Preparation and Antioxidant Activities of Protein Hydrolysates from Tenebrio molitor Larvae (Mealworm) (갈색거저리 유충 단백가수분해물의 제조 및 항산화 활성)

  • Yu, Mi-Hee;Lee, Hyo-Seon;Cho, Hye-Rin;Lee, Syng-Ook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • The present study was carried out to evaluate the applicability of Tenebrio molitor larvae (mealworm) as a health functional food material in order to contribute to the development of the domestic insect industry and health functional food industry. Protein hydrolysates were prepared from mealworm powder by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain), and the hydrolysates were then tested for their antioxidant activities. Based on available amino group contents and sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses, mealworms treated with alcalase ($4,781.39{\mu}g/mL$), flavourzyme ($5,429.35{\mu}g/mL$), or neutrase ($3,155.55{\mu}g/mL$) for 24 h showed high degree of hydrolysis (HD) value, whereas HD values of bromelain ($1,800{\mu}g/mL$) and papain-treated ($1,782.61{\mu}g/mL$) mealworms were much lower. Protein hydrolysates showing high HD values were further separated into > 3 kDa and ${\leq}3kDa$ fractions by a centrifugal filter system and then lyophilized, and the production yields of the low molecular weight protein hydrolysates (${\leq}3kDa$) by alcalase, flavourzyme, and neutrase were 42.05%, 26.27%, and 30.01%, respectively. According to the RC_{50} values of the protein hydrolysates (${\leq}3kDa$) obtained from three different antioxidant analyses, all three hydrolysates showed similar antioxidant activities. Thus, alcalase hydrolysates showing the highest production yield of low molecular weight protein hydrolysates were further tested for their inhibitory effects on peroxidation of linoleic acid by measuring thiobarbituric acid values, and the results show that peroxidation of untreated linoleic acid increased dramatically during 6 days of incubation. However, pretreatment with the hydrolysates ($100{\sim}800{\mu}g/mL$) significantly inhibited linoleic acid peroxidation in a dose-dependent manner over 6 days.

Studies on the Hydrolysis of the Waste wood of Cortinellus edodes with Trichoderma viride Cellulase (표고재배폐재(栽培廢材)의 당화(糖化)에 관(關)한 연구(硏究))

  • Min, Du Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.43 no.1
    • /
    • pp.31-34
    • /
    • 1979
  • In this study, enzymatic hydrolysis of the substrate of the waste wood of Cortinellus edodes was investigated using crude cellulase preparation of Trichoderma viride Pers. ex. Fr. SANK 16374. The crude cellulase was produced by the submerged culture process and produced in the culture fluid was salted out quantitatively by the use of ammonium sulfate. Reducing sugar was determined by the dinitrosalisylic acid (DNS) method. 1. The chemical composition of the waste wood was crude protein 2.26%, c. fat 2.57%, c. fibre 44.60%, c. ash 5.58% and lignin 13.62%. In amino acid composition, no cystine and methionine was showed, but trace amount of Vitamin A, $B_1$, and $B_2$, niacine and chloride were detected. (Table 1) 2. As heat treatment of the substrate was found to produce the highest reducing sugar yield being reacted for 48hr. with T.v cellulase, the substrate was heated to $190{\pm}5^{\circ}C$. for 45 min. either before or immediately after milling. 3. The substrate heated and ball milled at $190{\pm}5^{\circ}C$. for 45 min. the reducing sugar yield reached to 11.5%. 4. The substrate without any treatment was found to produce the highest reducing sugar yield being reacted 72hr. with T. v cellulase, the reducing sugar yield reached to 10.1%. 5. The rate of reducing sugar per each treated substrate was decreased by the order of the substrated, heated and then ball milled at $190{\pm}5^{\circ}C$. for 45 min. (11.5%)> without any treatment (10.1)> ball milled and heated at $190{\pm}5^{\circ}C$. for 45 min. (6.9%). 6. Saccharification of waste wood has been shown to be possible by heat treated and milling the substrate in contact with cellulase. And it is likely to be recommended that the waste wood may be valuable for raw materials of saccharification.

  • PDF

Characteristics of mushroom Phellinus baumii extracts with enzyme pretreatment (효소 전처리에 의한 상황버섯 β-glucan 추출물의 특성)

  • Son, Eun Ji;Ryu, Eun-Ah;Lee, Sang-Han;Kim, Young-Chan;Hwang, In-Wook;Chung, Shin-Kyo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.101-108
    • /
    • 2018
  • This study was conducted to establish optimized ${\beta}-glucan$ extraction method through enzymatic hydrolysis from Phellinus baumii and investigate ${\beta}-glucan$ contents and physicochemical properties. The optimal condition was obtained with the enzyme concentration of 0.66% (v/v), reaction time of 6.08 h ($R^2=0.9245$) and the ${\beta}-glucan$ contents from the Phellinus baumii extracts under the optimized condition was 1.9594 g/100 g. ${\beta}-Glucan$ yield (0.76-16.40%) of enzyme beta-glucan extract (EBE) was three fold higher than that of non-enzyme beta-glucan extract (NEBE). ${\beta}-Glucan$ purity (11.15-59.05%) of non-enzyme beta-glucan (NEB) and that of enzyme beta-glucan (EB) were higher than that of NEBE and that of EBE. ${\beta}-Glucan$ purity of EB (59.05%) and ${\beta}-glucan$ contents of EB (3.38 g/100 g) showed higher than those of others. Total sugar contents (0.61-1.17 mg/mL) showed that NEB and EB were higher than that of NEBE and EBE, EB had the highest total sugar content as 1.17 mg/mL, respectively. Protein contents (0.44-11.73 mg/mL) of NEBE and that of EBE were higher than that of NEB, that of EB. In FT-IR spectrum, the band at $890cm^{-1}$ of microcapsule was attributed to a ${\beta}-1,3-glucan$. The toxicities of ${\beta}-glucan$ from Phellinus baumii in both melanoma cell lines was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoli um bromide assay and ${\beta}-glucan$ from Phellinus baumii has no toxicity until $30{\mu}g/mL$. The effects of ${\beta}-glucan$ from Phellinus baumii on inhibition of cancer cell proliferation were detected by using a wound healing assay. The effect of NEB and EB were higher than NEBE and EBE, especially $30{\mu}g/mL$ of EB had the highest in both melanoma cell lines.

Studies on the Hydrolysis of Holocellulose with Trichoderma viride Cellulase - (I) Effect of the treated substrate - (Cellulase에 의(依)한 목재당화(木材糖化)에 관(關)한 연구(硏究) - (I) 기질(基質) 처리(處理)의 효과(効果) -)

  • Cheong, Tae-Seong;Min, Du-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.38 no.1
    • /
    • pp.13-18
    • /
    • 1978
  • In this study, enzymatic hydrolysis of the holocellulose from Alnus hirsuta (Spach) Rupr. (8-14 yr's) was investigated using crude cellulase preparations of Trichoderma viride Pers. ex. Fr. SANK 16374. And conducted on the optimum condition of the treated substrate for saccharification. A strain of Trichoderma viride Pers. ex. Fr. SANK 16374 was found to be highly efficient for the cellulase productivity, especially in the submerged culture process. The culture medium used in this experiment was prepared from an extract of wheat bran consisting also of $KH_2PO_410$, $(NH_4)_2$ $SO_4$ 3, $NaNO_3$ 3, and $MgSO_4$ $7H_2O$ 0.5g/l. Cellulose powder (Toyo filter paper, 60 mesh) was found to be an importent factar for inducing the cellulase formation. And the cellulase produced in the culture fluid was salted out quantitatively by the use of ammonium sulfate (Fig. 1) Reducing sugar was determined by the Dinitrosalicylic acid (DNS) method, using reagents prepared according to the method of Sumner (1925). The results obtained were summerized as follows; 1. The method of delignification were treated by the Peracetic acid (PA) method, according to the method of Toyama (1970). The yield of holocellulose were decreased in accordance with increasing concentration of Peracetic acid solution; delignification of Alnus hirsuta Rupr. with 20% Peracetic acid was satisfied for 48 hours and 40%~60% peracetic acid was satisfied for 24 hrs: 2. The substrate (holocellulose) was changed easely into fine powder with enzymatic hydrolysis and cellulase exhibits optimum activity on the reducing sugar formation from substrate at the range of 60-100 mesh. 3. The reducing sugar formation increased in accordance with increasing dry temperature on holocellulose substrate was found to be $190{\pm}5^{\circ}C$. 4. The optimal heat treated time of holocellulose substrate was found to be 45 min. for the reducing sugar formation showed the best products. The reducing sugar formation did not show statisticaly significent diflerences at 5% levels by heat treated time for 45 min. and 60 min.

  • PDF

Mycelial growth and wood decaying enzymatic activity analysis by various addition rates of oak powder in the liquid spawn of Lentinula edodes (참나무분 첨가에 따른 표고 액체종균의 균체생산 및 효소 활성)

  • Kim, Jeong-Han;Kang, Young-Ju;Baek, Il-Sun;Jeoung, Yun-Kyeoung;Lee, Yong-Seon;Cho, Hae-Seok;Lee, Young-Soon
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.74-78
    • /
    • 2018
  • This study was carried out to establish a suitable method for liquid spawn production from Lentinula edodes. The optimum production of liquid spawn (OLS) was achieved using soybean meal medium (SMM) with 0.3% of 850 um oak powder and 10-day incubation period and 0.6 vvm aeration volume. OLS showed activities of laccase on ABTS agar plate and carboxymethyl cellulase (CM-cellulase) on CMC agar plate. In case of liquid spawn, fruiting-body development period was delayed approximately 1 day compared to that of sawdust spawn, however, the yield of 153 g per 1.2 kg polypropylene bag was similar to that of sawdust spawn.

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. (Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제)

  • Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 2016
  • Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.

Electrostatic Immobilization of D-Xylose Isomerase to a Cation Exchanger for the Conversion of D-Xylose to D-Xylulose (D-xylose에서 D-xylulose로의 전환을 위한 D-xylose Isomerase의 정전기적 고정화)

  • Hang, Nguyen Thi;Kim, Sung-Gun;Kweon, Dae-Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2012
  • Since D-xylose is not fermentable in Saccharomyces cerevisiae, its conversion to D-xylulose is required for its application in biotechnological industries using S. cerevisiae. In order to convert D-xylose to D-xylulose by way of an enzyme immobilized system, D-xylose isomerase (XI) of Escherichia coli was fused with 10-arginine tag (R10) at its C-terminus for the simple purification and immobilization process using a cation exchanger. The fusion protein XIR10 was overexpressed in recombinant E. coli and purified to a high purity by a single step of cation exchange chromatography. The purified XIR10 was immobilized to a cation exchanger via the electrostatic interaction with the C-terminal 10-arginine tag. Both the free and immobilized XIR10 exhibited similar XI activities at various pH values and temperatures, indicating that the immobilization to the cation exchanger has a small effect on the enzymatic function of XIR10. Under optimized conditions for the immobilized XIR10, D-xylose was isomerized to D-xylulose with a conversion yield of 25%. Therefore, the results of this study clearly demonstrate that the electrostatic immobilization of XIR10 via the interaction between the 10-arginine tag and a cation exchanger is an applicable form of the conversion of D-xylose to D-xylulose.

Processing of Enzymatic Hydrolysates from Conger eel Scrap (붕장어 가공잔사를 이용한 효소분해소재의 가공)

  • Kang Su Tae;Kong Chung Sik;Cha Yong Jun;Kim Jong Tae;Oh Kwang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.259-264
    • /
    • 2002
  • In order to develope nutritional and flavoring intermediate products, the optimal processing conditions for two stage enzyme hydrolysate (TSEH) from low-utilized conger eel scrap such as head and intestine were investigated. The optimal processing conditions for TSEH were revealed in temperature at $55^{\circ}C$ 3$\~$4 hours digestion with alcalase at the 1st stage, and 4 hours at $45{\~}50^{\circ}C$ digestion with neutrase at the 2nd stage. Among water extract, steam extract and enzyme hydrolysates of conger eel scrap, the present TSEH was superior to other extracts in terms of yield ana organoleptic taste such as harmonic umami and inhibition of fishy and greasy taste formation. From the results of chemical experiments and sensory evaluation, we may conclude that TSEH of conger eel scrap could be utilized as the flavoring intermediate materials for the fisheries products such as flavoring sauces, drinkable beverage and instant food materials.

Partial purification and Properties of Alkaline Cellulase from Pseudomonas sp. AC-711 (Pseudomonas sp. AC-711이 생산하는 알칼리성 Cellulase의 부분정제 및 효소적 성질)

  • Yoon, Min-Ho;Lim, Sang-Ho;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.131-137
    • /
    • 1998
  • The cellulase components were partially purified from the culture filtrate of the alkalophilic bacterium Pseudomonas sp. AC-711 and its enzymatic properties were characterized. The specific activity of the purified major enzyme component was 3.5 units/mg protein as carboxymethyl cellulase and the yield was 23% of the total activity of the culture broth. The molecular weight of the component was 46,000 and the Km and Vmax on CMC were determined as $15.4mg\;mL^{-1}$ and $4.17{\mu}moles\;mL^{-1}\;min^{-1}$, respectively. The enzyme was stable at the temperatures below $60^{\circ}C$ and at the pH range of 4.0~11.0, and the optimal temperature and pH were $60^{\circ}C$ and pH 8.0, respectively. The enzyme activity was not significantly affected by the common surfactants (concentration: 0.05%) such as ${\alpha}$-olefin sulfonate, linear alkylbenzene sulfonate, sodium dodecyl sulfonate, hexadecyltrimethylammonium bromide and Tween 80. The enzyme was activated by the metal ions such as $Ca^{2+}$, $Cu^{2+}$, $Co^{2+}$, whereas inhibited by $Hg^{2+}$ and $Zn^{2+}$. The enzyme exhibited relatively high activity toward amorphous CMC as compared with crystalline substrates such as filter paper and avicel.

  • PDF