• 제목/요약/키워드: Enzymatic hydrolysis pretreatment

Search Result 102, Processing Time 0.025 seconds

Enzymatic Hydrolysis Condition of Pretreated Corncob by Oxalic Acid to Improve Ethanol Production (에탄올 생산 향상을 위한 옥살산 전처리 옥수숫대의 효소가수분해 조건 탐색)

  • Lim, Woo-Seok;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.294-301
    • /
    • 2012
  • In this study, we investigated the features of bioethanol fermentation of corncob biomass after oxalic acid pretreatment as well as enzymatic hydrolysis. The enzymatic hydrolysis was performed with Accellerase 1000 and the highest yield of monomeric sugars ($64.8g/{\ell}$) was obtained at $50^{\circ}C$ and pH 4.5 for 96 hrs hydrolysis period. For the ethanol fermentation the monomeric sugars obtained from pretreated corncob were subjected to the biological treatment using Pichia stipitis CBS 6054. It was turned out that ethanol production from oxalic acid pretreated corncob was the most feasible at 10~14% of biomass loading as well as 15 FPU enzyme amount. Under these fermentation condition, the ethanol yield was approached to 0.47 after 24 hrs fermentation period, which was corresponded to 92.2% of conversion rate.

A Research Trend of Pretreatment in Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review (목질계 바이오에탄올 생산의 전처리 기술에 관한 연구동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.274-286
    • /
    • 2009
  • Lignocellulosic biomass is the most abundant raw material for bioconversion in many country. However the high costs for pretreatment and enzymatic hydrolysis currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into intermediates that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of pretreatment with lignocellulosic biomass in bioethanol production process.

Enzymatic Hydrolysis Characteristics of Pretreated Rice Straw By Aqueous Ammonia for Bioethanol Production (바이오에탄올 생산을 위한 암모니아수에 의해 전처리된 볏짚의 효소당화 특성)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.470-474
    • /
    • 2011
  • Rice straw is the main grain straw and is produced in large quantities every year in Korea. Pretreatment of lignocellulosic biomass using soaking process was carried out mild conditions at atmospheric pressure and temperature of $60^{\circ}C$. We found enzymatic hydrolysis condition of pretreated biomass. In case of a rice straw, compared with previous lignocellulosic biomass, we found that hydrolysis time was a shorter than others. Hydrolysis of SAA-treated rice straw has shown conversion rate was higher at $50^{\circ}C$. Hydrolysis was ended between 40~48 hour. Glucose conversion rate was higher when enzyme loading is 65 FPU/ml and 32 CbU/ml. When substrate concentration was 5%(w/v), it was that conversion rate was 83.8% after hydrolysis for 72 hr. In simultaneous saccharification and fermentation(SSF) experiment about SAA-treated rice straw, ethanol productive yield was highest from $40^{\circ}C$. The yield of that time was 33.05% from 48 hour.

Integrated Hydrolyzation and Fermentation of Sugar Beet Pulp to Bioethanol

  • Rezic, Tonic;Oros, Damir;Markovic, Iva;Kracher, Daniel;Ludwig, Roland;Santek, Bozidar
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1244-1252
    • /
    • 2013
  • Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 $g/l{\cdot}h$, respectively.

Preparation and Characterization of Cellulose Nanofibrils from Lignocellulose Using a Deep Eutectic Solvent Followed by Enzymatic Treatment

  • Eun-Ah ,LEE;Song-Yi, HAN;Gu-Joong, KWON;Jeong-Ki, KIM;Rajkumar, BANDI;Ramakrishna, DADIGALA;Ji-Soo, PARK;Chan-Woo, PARK;Seung-Hwan, LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.436-447
    • /
    • 2022
  • Lignocellulose nanofibrils (LCNFs) were prepared using a two-step deep eutectic solvent (DES) and enzymatic pretreatment followed by mechanical defibrillation, and we examined the effects of enzymatic pretreatment conditions on different characteristics of the LCNFs thus obtained. The LCNFs yielded using the two-step DES pretreatment (Enz-LCNF) exhibited a well-defibrillated entangled web-like structure with an average fiber diameter ranging from 15.7 to 20.4 nm. Furthermore, we found that the average diameter and filtration time of the Enz-LCNFs decreased with an increase in enzyme concentration and enzymatic treatment time, whereas we detected a concomitant reduction in the tensile strength of the Enz-LCNF sheets. The Enz-LCNFs were characterized by a typical cellulose I structure, thereby indicating that the enzymatic treatment causes very little damage to the crystalline form.

The Effect of Extrusion Treatment on Aqueous Ammonia Soaking Method in Miscanthus Biomass Pretreatment (억새 바이오매스 전처리에서 압출 처리가 액상 암모니아 침지 처리에 미치는 영향)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Ahn, Seung-Hyun;Cha, Young-Lok;Kim, Jung-Kon;An, Gi-Hong;Suh, Sae-Jung;Park, Don-Hee
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.6-14
    • /
    • 2010
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. Extrusion is a well established process in food industries and it can be used as a physicochemical treatment method for cellulosic biomass. Aqueous ammonia soaking treatment at mild temperatures ranging from 60 to $80^{\circ}C$ for longer reaction times has been used to preserve most of the cellulose and hemicellulose in the biomass. The objective of this study was to evaluate the effect of extrusion treatment on aqueous ammonia soaking method. Extrusion was performed with miscanthus sample conditioned to 2mm of particle size and 20% of moisture content at $200^{\circ}C$ of barrel temperature and 175rpm of screw speed. And then aqueous ammonia soaking was performed with 15%(w/w) ammonia solution at $60^{\circ}C$ for 1, 2, 4, 8, 12 hours on the extruded and raw miscanthus samples respectively. In the combined extrusion-soaking treatment, most compositions removal occurred within 1~2 hours and on a basis of 1 hour soaking treatment values, cellulose was recovered about 85% and other compositions, including hemicellulose, are removed about 50% from extruded miscanthus sample. The combined extrusion-soaking treated and soaking only treated samples were subjected to enzymatic hydrolysis using cellulase and ${\beta}$-glucosidase. The enzymatic digestibility value of combined extrusion-2 hours soaking treated sample was comparable to 12 hours soaking only treated sample. It means that extrusion treatment can shorten the conventional long reaction time of aqueous ammonia soaking. The findings suggest that the combination of extrusion and soaking is a promising pretreatment method to solve both problems for no lignin removal of extrusion and long reaction time of aqueous ammonia soaking.

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.641-649
    • /
    • 2016
  • This study was conducted to evaluate the yield of bio-ethanol produced by separate hydrolysis and fermentation (SHF) with the pretreated rapeseed straw (RS) using crude enzyme of Cellulomonas flavigena and Saccharomyces cereviase. Crude enzyme of C. flavigena showed enzymatic activity of 14.02 U/mL for CMC 133.40 U/mL, for xylan 15.21 U/mL, for locust gum and 15.73 U/mL for rapeseed straw at pH 5.0 and $40^{\circ}C$, respectively. The hemicellulose contents of RS was estimated to compromise 36.62% of glucan, 43.20% of XMG (xylan + mannan + galactan), and 2.73% of arabinan by HPLC analysis. The recovering ratio of rapeseed straw were investigated to remain only glucan 75.2% after 1% $H_2SO_4$ pretreatment, glucan 45.44% and XMG 32.13% after NaOH, glucan 44.75% and XMG 5.47% after $NH_4OH$, and glucan 41.29% and XMG 41.04% after hot water. Glucan in the pretreatments of RS was saccharified to glucose of 45.42 - 64.81% by crude enzyme of C. flavigena while XMG was made into to xylose + mannose + galactose of 58.46 - 78.59%. Moreover, about 52.88 - 58.06 % of bio-ethanol were obtained from four kinds of saccharified solutions by SHF using S. cerevisiae. Furthermore, NaOH pretreatment was determined to show the highest mass balance, in which 21.22 g of bio-ethanol was produced from 100 g of RS. Conclusively, the utilization of NaOH pretreatment and crude enzyme of Cellulomonas flavigena was estimated to be the best efficient saccharification process for the production of bio-ethanol with rapeseed straw by SHF.

Pretreatment of Used Newspaper to Increase Enzymatic Digestibility (효소 당화율을 높이기 위해 폐 신문지의 전처리)

  • 문남규;김성배
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.446-451
    • /
    • 2001
  • A pretreatment method to increase enzymatic digestibility for waste paper such as newspaper was investigated. Ash content, substrate size and printed ink were considered to be factors that affect on enzymatic hydrolysis. The effect on enzymatic digestibility of varying these factor were measured. Printed ink had the highest effect of the three factors, so a method was developed to remove the ink during pretreatment. Fist, a pretreatment process using a percolation reactor was tried. The digestibility of the substrate pretreated at 170$\^{C}$, however, was less than that of the untreated substrate because only small portion of ink was removed. Therefore, a batch type process at less than 100$\^{C}$ was devised. Of several schemes, a method using amonia-hydrogen peroxide mixture on a shaking bath proved most effective. The digestibility obtained from this method was about 85%--approximately 20% greater than the untreated substrate. This proves the pretreatment method was very effective in treating waste paper. The high digestibility obtained from this pretreatment is probably due to the effects of the hydrogen peroxide that can enhance ink removal and substrate swelling.

  • PDF

Comparison of pretreatment of fallen leaves for application evaluation by Bio-ethanol raw material (바이오에탄올 원료로서 활용평가를 위한 낙엽의 전처리 비교)

  • Choi, Hyoyeon;Kim, Jaehyung;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.241-246
    • /
    • 2014
  • This study is to compare characteristics of saccharification reactions applying to enzymatic hydrolysis of pretreated fallen leaves for bio-ethanol production. It experimented pretreatment of acid, alkaline in the chemical. This experiment includes preteatment of acid and alkaline in chemical, soaking, shaking and autoclaving method, which were applied to biomass. In result, the glucose production from alkaline-NaOH method was 263 mg glucose/ g biomass comparing with them of acid-HCl method. Thus, alkaline-NaOH method is superior than the acid-HCl method for chemical preteatment of fallen leaves. Also, when various chemical treatments were compared, they were all. Based on the results of this study, we found that leaves, one of biomass, are possible in pretreatment and enzymatic hydrolysis process, and they are likely to affect bio-ethanol production in the future.