Browse > Article
http://dx.doi.org/10.5658/WOOD.2022.50.6.436

Preparation and Characterization of Cellulose Nanofibrils from Lignocellulose Using a Deep Eutectic Solvent Followed by Enzymatic Treatment  

Eun-Ah ,LEE (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Song-Yi, HAN (Institute of Forest Science, Kangwon National University)
Gu-Joong, KWON (Institute of Forest Science, Kangwon National University)
Jeong-Ki, KIM (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Rajkumar, BANDI (Institute of Forest Science, Kangwon National University)
Ramakrishna, DADIGALA (Institute of Forest Science, Kangwon National University)
Ji-Soo, PARK (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Chan-Woo, PARK (Institute of Forest Science, Kangwon National University)
Seung-Hwan, LEE (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.50, no.6, 2022 , pp. 436-447 More about this Journal
Abstract
Lignocellulose nanofibrils (LCNFs) were prepared using a two-step deep eutectic solvent (DES) and enzymatic pretreatment followed by mechanical defibrillation, and we examined the effects of enzymatic pretreatment conditions on different characteristics of the LCNFs thus obtained. The LCNFs yielded using the two-step DES pretreatment (Enz-LCNF) exhibited a well-defibrillated entangled web-like structure with an average fiber diameter ranging from 15.7 to 20.4 nm. Furthermore, we found that the average diameter and filtration time of the Enz-LCNFs decreased with an increase in enzyme concentration and enzymatic treatment time, whereas we detected a concomitant reduction in the tensile strength of the Enz-LCNF sheets. The Enz-LCNFs were characterized by a typical cellulose I structure, thereby indicating that the enzymatic treatment causes very little damage to the crystalline form.
Keywords
lignocellulose; cellulose nanofibril; deep eutectic solvent; enzymatic hydrolysis;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Han, S.Y., Park, C.W., Kwon, G.J., Kim, N.H., Kim, J.C., Lee, S.H. 2020b. Ionic liquid pretreatment of lignocellulosic biomass. Journal of Forest and Environmental Science 36(2): 69-77.    DOI
2 Han, S.Y., Park, C.W., Lee, S.H. 2017. Preparation of lignocellulose nanofiber by mechanical defibrillation after pretreatment using cosolvent of ionic liquid and DMF. Journal of the Korean Wood Science and Technology 45(3): 268-277. 
3 Henriksson, M., Berglund, L.A. 2007. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. Journal of Applied Polymer Science 106(4): 2817-2824.    DOI
4 Henriksson, M., Henriksson, G., Berglund, L.A., Lindstrom, T. 2007. An environmentally friendly method for enzyme-assisted preparation of micro-fibrillated cellulose (MFC) nanofibers. European Polymer Journal 43(8): 3434-3441. 
5 Jang, J.H., Lee, S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. Journal of the Korean Wood Science and Technology 42(6): 700-707.    DOI
6 Jang, J.H., Lee, S.H., Lee, M., Lee, S.M., Kim, N.H. 2017. Changes of micro- and nanoscopic morphology of various bioresources by different milling systems. Journal of the Korean Wood Science and Technology 45(6): 737-745.    DOI
7 Ji, S., Jang, J., Cho, E., Kim, S.H., Kang, E.S., Kim, J., Kim, H.K., Kong, H., Kim, S.K., Kim, J.Y., Park, J.U. 2017. High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Advanced Materials 29(24): 1700538. 
8 Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., Laaksonen, T. 2012. Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 82(2): 308-315.    DOI
9 Lee, S.H., Kim, H.J., Kim, J.C. 2019. Nanocellulose applications for drug delivery: A review. Journal of Forest and Environmental Science 35(3): 141-149. 
10 Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrils and their applications: High strength nanopapers and polymer composite films. Journal of the Korean Wood Science and Technology 39(3): 197-205.    DOI
11 Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426-428.    DOI
12 Mishra, R.K., Sabu, A., Tiwari, S.K. 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society 22(8): 949-978. 
13 Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of Korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. Journal of the Korean Wood Science and Technology 43(1): 17-24.    DOI
14 Nakagaito, A.N., Yano, H. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A 78(4): 547-552. 
15 Nakagaito, A.N., Yano, H. 2005. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Applied Physics A 80(1): 155-159.    DOI
16 Okahisa, Y., Yoshida, A., Miyaguchi, S., Yano, H. 2009. Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology 69(11-12): 1958-1961.    DOI
17 Yu, Z., Wang, W., Kong, F., Lin, M., Mustapha, A. 2019. Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells. International Journal of Biological Macromolecules 129: 887-894.    DOI
18 Park, S., Park, B.D. 2021. Crystallinity of low molar ratio urea-formaldehyde resins modified with cellulose nanomaterials. Journal of the Korean Wood Science and Technology 49(2): 169-180.    DOI
19 Ryu, J.R., Sim, K., Youn, H.J. 2014. Evaluation of de- watering of cellulose nanofibrils suspension and effect of cationic polyelectrolyte addition on dewatering. Journal of Korea Technical Association of the Pulp and Paper Industry 46(6): 78-86.    DOI
20 Song, W.Y., Jeong, S.B., Juhn, S.Y., Shin, S.J. 2019. Fibrillation characteristics of cellulose nanofibrils with water retention value method. Journal of Korea Technical Association of the Pulp and Paper Industry 51(1): 128-133. 
21 Zaini, L.H., Febrianto, F., Wistara, I.N.J., Marwanto, N., Maulana, M.I., Lee, S.H., Kim, N.H. 2019. Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. Journal of the Korean Wood Science and Technology 47(5): 597-606.    DOI
22 Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298.    DOI
23 Zhang, C.W., Xia, S.Q., Ma, P.S. 2016. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology 219: 1-5.    DOI
24 Abe, K., Yano, H. 2012. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19(6): 1907-1912.    DOI
25 Fatriasari, W., Nurhamzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665.    DOI
26 Adney, B., Baker, J. 2008. Measurement of Cellulase Activities. Technical Report NREL/TP-510-42628. National Renewable Energy Laboratory (NREL), Golden, CO, USA. 
27 Chen, H., Nair, S.S., Chauhan, P., Yan, N. 2019. Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces. Chemical Engineering Journal 360: 393-401. 
28 Daicho, K., Saito, T., Fujisawa, S., Isogai, A. 2018. The crystallinity of nanocellulose: Dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Applied Nano Materials 1(10): 5774-5785.    DOI
29 Francisco, M., van den Bruinhorst, A., Kroon, M.C. 2012. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chemistry 14(8): 2153-2157. 
30 Fu, D., Mazza, G., Tamaki, Y. 2010. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. Journal of Agricultural and Food Chemistry 58(5): 2915-2922.    DOI
31 Ghose, T.K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257-268.    DOI
32 Han, S.Y., Park, C.W., Kwon, G.J., Kim, J.H., Kim, N.H., Lee, S.H. 2020a. Effect of [EMIM]Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification. Journal of the Korean Wood Science and Technology 48(3): 405-413.    DOI