DOI QR코드

DOI QR Code

Preparation and Characterization of Cellulose Nanofibrils from Lignocellulose Using a Deep Eutectic Solvent Followed by Enzymatic Treatment

  • Eun-Ah ,LEE (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Song-Yi, HAN (Institute of Forest Science, Kangwon National University) ;
  • Gu-Joong, KWON (Institute of Forest Science, Kangwon National University) ;
  • Jeong-Ki, KIM (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Rajkumar, BANDI (Institute of Forest Science, Kangwon National University) ;
  • Ramakrishna, DADIGALA (Institute of Forest Science, Kangwon National University) ;
  • Ji-Soo, PARK (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Chan-Woo, PARK (Institute of Forest Science, Kangwon National University) ;
  • Seung-Hwan, LEE (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • Received : 2022.08.04
  • Accepted : 2022.11.11
  • Published : 2022.11.25

Abstract

Lignocellulose nanofibrils (LCNFs) were prepared using a two-step deep eutectic solvent (DES) and enzymatic pretreatment followed by mechanical defibrillation, and we examined the effects of enzymatic pretreatment conditions on different characteristics of the LCNFs thus obtained. The LCNFs yielded using the two-step DES pretreatment (Enz-LCNF) exhibited a well-defibrillated entangled web-like structure with an average fiber diameter ranging from 15.7 to 20.4 nm. Furthermore, we found that the average diameter and filtration time of the Enz-LCNFs decreased with an increase in enzyme concentration and enzymatic treatment time, whereas we detected a concomitant reduction in the tensile strength of the Enz-LCNF sheets. The Enz-LCNFs were characterized by a typical cellulose I structure, thereby indicating that the enzymatic treatment causes very little damage to the crystalline form.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 2018R1A6A1A03025582, 2020R1I1A1A01073601).

References

  1. Abe, K., Yano, H. 2012. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19(6): 1907-1912.  https://doi.org/10.1007/s10570-012-9784-3
  2. Adney, B., Baker, J. 2008. Measurement of Cellulase Activities. Technical Report NREL/TP-510-42628. National Renewable Energy Laboratory (NREL), Golden, CO, USA. 
  3. Chen, H., Nair, S.S., Chauhan, P., Yan, N. 2019. Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces. Chemical Engineering Journal 360: 393-401. 
  4. Daicho, K., Saito, T., Fujisawa, S., Isogai, A. 2018. The crystallinity of nanocellulose: Dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Applied Nano Materials 1(10): 5774-5785.  https://doi.org/10.1021/acsanm.8b01438
  5. Fatriasari, W., Nurhamzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665.  https://doi.org/10.5658/WOOD.2020.48.5.651
  6. Francisco, M., van den Bruinhorst, A., Kroon, M.C. 2012. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chemistry 14(8): 2153-2157. 
  7. Fu, D., Mazza, G., Tamaki, Y. 2010. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. Journal of Agricultural and Food Chemistry 58(5): 2915-2922.  https://doi.org/10.1021/jf903616y
  8. Ghose, T.K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257-268.  https://doi.org/10.1351/pac198759020257
  9. Han, S.Y., Park, C.W., Kwon, G.J., Kim, J.H., Kim, N.H., Lee, S.H. 2020a. Effect of [EMIM]Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification. Journal of the Korean Wood Science and Technology 48(3): 405-413.  https://doi.org/10.5658/WOOD.2020.48.3.405
  10. Han, S.Y., Park, C.W., Kwon, G.J., Kim, N.H., Kim, J.C., Lee, S.H. 2020b. Ionic liquid pretreatment of lignocellulosic biomass. Journal of Forest and Environmental Science 36(2): 69-77.  https://doi.org/10.7747/JFES.2020.36.2.69
  11. Han, S.Y., Park, C.W., Lee, S.H. 2017. Preparation of lignocellulose nanofiber by mechanical defibrillation after pretreatment using cosolvent of ionic liquid and DMF. Journal of the Korean Wood Science and Technology 45(3): 268-277. 
  12. Henriksson, M., Berglund, L.A. 2007. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. Journal of Applied Polymer Science 106(4): 2817-2824.  https://doi.org/10.1002/app.26946
  13. Henriksson, M., Henriksson, G., Berglund, L.A., Lindstrom, T. 2007. An environmentally friendly method for enzyme-assisted preparation of micro-fibrillated cellulose (MFC) nanofibers. European Polymer Journal 43(8): 3434-3441. 
  14. Jang, J.H., Lee, S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. Journal of the Korean Wood Science and Technology 42(6): 700-707.  https://doi.org/10.5658/WOOD.2014.42.6.700
  15. Jang, J.H., Lee, S.H., Lee, M., Lee, S.M., Kim, N.H. 2017. Changes of micro- and nanoscopic morphology of various bioresources by different milling systems. Journal of the Korean Wood Science and Technology 45(6): 737-745.  https://doi.org/10.5658/WOOD.2017.45.6.737
  16. Ji, S., Jang, J., Cho, E., Kim, S.H., Kang, E.S., Kim, J., Kim, H.K., Kong, H., Kim, S.K., Kim, J.Y., Park, J.U. 2017. High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Advanced Materials 29(24): 1700538. 
  17. Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., Laaksonen, T. 2012. Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 82(2): 308-315.  https://doi.org/10.1016/j.ejpb.2012.06.011
  18. Lee, S.H., Kim, H.J., Kim, J.C. 2019. Nanocellulose applications for drug delivery: A review. Journal of Forest and Environmental Science 35(3): 141-149. 
  19. Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrils and their applications: High strength nanopapers and polymer composite films. Journal of the Korean Wood Science and Technology 39(3): 197-205.  https://doi.org/10.5658/WOOD.2011.39.3.197
  20. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426-428.  https://doi.org/10.1021/ac60147a030
  21. Mishra, R.K., Sabu, A., Tiwari, S.K. 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society 22(8): 949-978. 
  22. Nakagaito, A.N., Yano, H. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A 78(4): 547-552. 
  23. Nakagaito, A.N., Yano, H. 2005. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Applied Physics A 80(1): 155-159.  https://doi.org/10.1007/s00339-003-2225-2
  24. Okahisa, Y., Yoshida, A., Miyaguchi, S., Yano, H. 2009. Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology 69(11-12): 1958-1961.  https://doi.org/10.1016/j.compscitech.2009.04.017
  25. Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of Korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. Journal of the Korean Wood Science and Technology 43(1): 17-24.  https://doi.org/10.5658/WOOD.2015.43.1.17
  26. Park, S., Park, B.D. 2021. Crystallinity of low molar ratio urea-formaldehyde resins modified with cellulose nanomaterials. Journal of the Korean Wood Science and Technology 49(2): 169-180.  https://doi.org/10.5658/WOOD.2021.49.2.169
  27. Ryu, J.R., Sim, K., Youn, H.J. 2014. Evaluation of de- watering of cellulose nanofibrils suspension and effect of cationic polyelectrolyte addition on dewatering. Journal of Korea Technical Association of the Pulp and Paper Industry 46(6): 78-86.  https://doi.org/10.7584/ktappi.2014.46.6.078
  28. Song, W.Y., Jeong, S.B., Juhn, S.Y., Shin, S.J. 2019. Fibrillation characteristics of cellulose nanofibrils with water retention value method. Journal of Korea Technical Association of the Pulp and Paper Industry 51(1): 128-133. 
  29. Yu, Z., Wang, W., Kong, F., Lin, M., Mustapha, A. 2019. Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells. International Journal of Biological Macromolecules 129: 887-894.  https://doi.org/10.1016/j.ijbiomac.2019.02.084
  30. Zaini, L.H., Febrianto, F., Wistara, I.N.J., Marwanto, N., Maulana, M.I., Lee, S.H., Kim, N.H. 2019. Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. Journal of the Korean Wood Science and Technology 47(5): 597-606.  https://doi.org/10.5658/WOOD.2019.47.5.597
  31. Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298.  https://doi.org/10.5658/WOOD.2021.49.4.287
  32. Zhang, C.W., Xia, S.Q., Ma, P.S. 2016. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology 219: 1-5.  https://doi.org/10.1016/j.biortech.2016.07.026