• Title/Summary/Keyword: Enzymatic antioxidants

Search Result 62, Processing Time 0.032 seconds

Enzymatic preparation and antioxidant activities of protein hydrolysates from Gryllus bimaculatus (쌍별귀뚜라미 단백가수분해물의 제조 및 항산화 활성)

  • Cho, Hye-Rin;Lee, Yoo-Jung;Hong, Ji-Eun;Lee, Syng-Ook
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.473-479
    • /
    • 2019
  • Gryllus bimaculatus (GB) has recently been registered as a food variety in Korea. In the present study, we prepared protein hydrolysates from GB and evaluated their antioxidant capacity. Protein hydrolysates were prepared from dried GB using enzymatic hydrolysis using five different proteases, and protein hydrolysates showing high hydrolysis value (alcalase, flavourzyme, and neutrase) were separated further into fractions ${\leq}3kDa$ and then lyophilized. Based on $RC_{50}$ values of hydrolysates (${\leq}3kDa$) obtained from four different antioxidant analyses, the flavourzyme hydrolysates showed relatively high levels of antioxidant capacity among the three hydrolysates, and in particular, it showed considerably strong antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The flavourzyme hydrolysate also significantly inhibited peroxidation of linoleic acid. These results suggest that protein hydrolysates from GB represent potential sources of natural antioxidants. Our current studies are focused on identification of active peptides from the flavourzyme hydrolysate.

Enzymatic preparation and antioxidant activities of protein hydrolysates derived from tuna byproducts (참치 가공부산물로부터 단백가수분해물 제조 및 항산화 활성 평가)

  • Gyu-Hyeon Park;Jeong-Min Lee;Na-Young Lim;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.885-895
    • /
    • 2023
  • This study aims to investigate the production and characteristics of protein hydrolysates derived from tuna byproducts (TP) using various proteolytic enzymes and to compare the antioxidant activity of the resulting hydrolysates. The TP were subjected to enzymatic hydrolysis using five different proteases: alcalase, bromelain, flavourzyme, neutrase, and papain, and the antioxidant activities of the hydrolysates were evaluated. Subsequent analysis of the available amino group contents and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns indicated a high degree of hydrolysis in TP after treatment with all the enzymes, except for papain. Based on the RC50 values obtained from four different antioxidant analyses, all the hydrolysates exhibited similar antioxidant activity, except for the flavourzyme hydrolysate, which showed significantly higher scavenging activity against ABTS radicals and hydrogen peroxide than the other hydrolysates. These findings suggest that protein hydrolysates derived from TP hold promise as potential sources of natural antioxidants.

Screening of the Antioxidant Defense Systems from Parthenocisuss tricuspidata PLANCH (담쟁이덩굴의 항산화 방어계의 탐색)

  • 정형진;김충현
    • Korean Journal of Plant Resources
    • /
    • v.14 no.2
    • /
    • pp.116-123
    • /
    • 2001
  • The non-enzymatic antioxidants and antioxidant enzyme from the extracts of Parthenocissus tricuspidata PLANCH. were examined in order to utilize natural product for cerchemopreventive agents. The antioxidant potential and enzyme activities on plant positions in the extracts of Parthenocisuss tricuspidata PLANCH. showed considerable differences. The antioxidant activity of the leaf extracts by Ethyl acetate fractions of Parthenocisuss tricuspidata PLANCH. was the highest among three positions ($7.57\mu\textrm{g}/m\ell$). The highest activities showed in S-5 (in leaf), S-4 (in stem) and S-3 (in root) fraction by Silicagel column chromatography and the antioxidant activity showed, in purified extract of each positions, $7.06\mu\textrm{g}/m\ell$ (in leaf), $6.99\mu\textrm{g}/m\ell$ (in stem) and $12.39\mu\textrm{g}/m\ell$ (in root) respectively. The activities of DPPH by LH-20 column chromatography revealed much higher than those by silica-gel column chromatography. These were identified as the phenolic compounds known as antioxidant compounds such as Benzoic acid(Gallic acid), 1-methyl-3-(2-phenylethen) benzene, phloroglucinol and 1,2-dihydroxy-4-(1-propyl)benzene by GC/MS. POD activities in the stem and root were higher than in the leaf. SOD activity was highest in the leaf, stem and root activity was comparatively low. Especially, SOD activity in leaf was over 2 times higher than root.

  • PDF

Effect of Se-methylselenocysteine on the Antioxidant System in Rat Tissues

  • Shin, Ho-Sang;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.267-274
    • /
    • 2010
  • We assessed the effect of Se-methylselenocysteine (MSC) treatment, at a dose of 0.75 mg/rat/day for 1 or 2 weeks, on the activities of antioxidant systems in Sprague-Dawley rat tissues. Significant changes in glutathione and antioxidant enzyme activities, with different patterns among tissues, were evidenced. Glutathione content and its reduction state in the liver, lung, and kidney were elevated upon MSC treatment, whereas they were significantly lowered in the spleen. Among the tissues exhibiting glutathione increase, there were different enzymatic responses: $\gamma$-glutamylcysteine ligase activity, the rate-limiting enzyme in the glutathione synthesis pathway, was increased in the liver, whereas the activities of the enzymes associated with glutathione recycling, namely, glutathione peroxidase, glutathione reductase, and glucose 6-phosphate dehydrogenase, were significantly increased in the lung and the kidney. The superoxide dismutase activity was decreased in all tissues upon MSC treatment, whereas catalase activity was increased in all tissues but the liver. Lipid peroxidation level was transiently increased at 1 week in the lung and the kidney, whereas it was persistently increased in the spleen. The increase was not evident in the liver. The results indicate that the MSC treatment results in an increase in the antioxidant capacity of the liver, lung, and kidney principally via an increase in glutathione content and reduction, which appeared to be a result of increased synthesis or recycling of glutathione via tissue-dependent adaptive response to oxidative stress triggered by MSC. The spleen appeared to be very sensitive to oxidative stress, and therefore, the adaptive response could not provide protection against oxidative damage.

Synergistic interaction between acetaminophen and L-carnosine improved neuropathic pain via NF-κB pathway and antioxidant properties in chronic constriction injury model

  • Owoyele, Bamidele Victor;Bakare, Ahmed Olalekan;Olaseinde, Olutayo Folajimi;Ochu, Mohammed Jelil;Yusuff, Akorede Munirdeen;Ekebafe, Favour;Fogabi, Oluwadamilare Lanre;Roi, Treister
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.271-279
    • /
    • 2022
  • Background: Inflammation is known to underlie the pathogenesis in neuropathic pain. This study investigated the anti-inflammatory and neuroprotective mechanisms involved in antinociceptive effects of co-administration of acetaminophen and L-carnosine in chronic constriction injury (CCI)-induced peripheral neuropathy in male Wistar rats. Methods: Fifty-six male Wistar rats were randomly divided into seven experimental groups (n = 8) treated with normal saline/acetaminophen/acetaminophen + L-carnosine. CCI was used to induce neuropathic pain in rats. Hyperalgesia and allodynia were assessed using hotplate and von Frey tests, respectively. Investigation of spinal proinflammatory cytokines and antioxidant system were carried out after twenty-one days of treatment. Results: The results showed that the co-administration of acetaminophen and L-carnosine significantly (P < 0.001) increased the paw withdrawal threshold to thermal and mechanical stimuli in ligated rats compared to the ligated naïve group. There was a significant (P < 0.001) decrease in the levels of nuclear factor kappa light chain enhancer B cell inhibitor, calcium ion, interleukin-1-beta, and tumour necrotic factor-alpha in the spinal cord of the group coadministered with acetaminophen and L-carnosine compared to the ligated control group. Co-administration with acetaminophen and L-carnosine increased the antioxidant enzymatic activities and reduced the lipid peroxidation in the spinal cord. Conclusions: Co-administration of acetaminophen and L-carnosine has anti-inflammatory effects as a mechanism that mediate its antinociceptive effects in CCI-induced peripheral neuropathy in Wistar rat.

Application of Plant Flavonoids as Natural Antioxidants in Poultry Production (가금 생산에서 천연 항산화제로서 식물성 Flavonoids의적용)

  • Kang-Min, Seomoon;In-Surk, Jang
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.211-220
    • /
    • 2022
  • Poultry are exposed to extremely high levels of oxidative stress as a consequence of the excessive production of reactive oxygen species (ROS) induced by endogenous and exogenous stressors, such as high-stocking densities, thermal stress, environmental and feed contamination, along with factors associated with intensive breeding systems. Oxidative stress promotes lipid peroxidation, DNA damage, and inflammation, which can have detrimental effects on the health of birds. During the course of evolution, birds have developed antioxidant defense mechanisms that contribute to maintaining homeostasis when exposed to endogenous and exogenous stressors. The primary antioxidant defense systems are enzymatic and non-enzymatic in nature and play roles in protecting cells from ROS attack. Recently, plant flavonoids, which have been established to reduce oxidative stress, have been attracting considerable attention as potential feed additives. Flavonoids are a group of polyphenolic compounds that can be stabilized by binding structural compounds with ROS, and can promote the elimination of ROS by inducing the expression of antioxidant enzymes. However, although flavonoids can contribute to reducing lipid peroxidation and thereby enhance the antioxidant capacity of birds, they have low solubility in the gastrointestinal tract, and consequently, it is necessary to develop a delivery technology that can facilitate the effect intestinal absorption of these compounds. Furthermore, it is important to determine the dietary levels of flavonoids by assessing the exact antioxidant effects in the gastrointestinal tract wherein the concentrations of dietary flavonoids are highest. It is also necessary to examine the expression of transcriptional factors and vitagenes associated with the efficient antioxidant effects induced by flavonoids. It is anticipated that the application of flavonoids as natural antioxidants will become a particularly important field in the poultry industry.

Change of Antioxidant Activities in Carrots (Daucus carota var. sativa) with Enzyme Treatment (효소처리 가공이 당근(Daucus carota var. sativa)의 항산화 활성 변화에 미치는 영향)

  • Yoo, Jin-Kyoun;Lee, Jin-Hee;Cho, Hyung-Yong;Kim, Jung-Gook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.262-267
    • /
    • 2013
  • The purpose of this research is to minimize the loss of nutrients in carrots (Daucus carota var. sativa). A protopectinase was used to enzymatically macerated and separate cells without damage. The enzyme modification group's collection rate was 81% (residue rate 19%), while the grinding process group's collection rate was 56% (residue rate 44%)-an over 20% of collection rate difference. Thus we predicted a big difference in transference number after the process and wastage. In comparing ingredient changes in the enzyme modification group versus the grinding process group, the content of ${\beta}$-carotene (the carrot's main ingredient) showed a change in protection factor (PF) ($2.2{\pm}0.2$ PF, $1.4{\pm}0.4$ PF, respectively), total polyphenol content ($89{\pm}3.42{\mu}g/g$, $64{\pm}4.16{\mu}g/g$, respectively), and total flavonoid content ($68{\pm}2.73{\mu}g/g$, $41{\pm}3.26{\mu}g/g$, respectively). Thus we confirmed that nutrient destruction, due to cell membrane preservation, occurred less often in the enzyme modification process than the mechanical grinding process group. We also measured DPPH radical scavenging activity, hydroxyl radical scavenging activity, and nitrite scavenging activity. DPPH radical scavenging activity was $87{\pm}0.29%$ and $74{\pm}1.56%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Hydroxyl radical scavenging activity was $44{\pm}0.49%$ and $32{\pm}0.48%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Nitrite scavenging activity was $59{\pm}0.53%$ and $46{\pm}0.62%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Our results show that cell membrane preservation, via the protopectinase enzyme process, decreases the loss of nutrients and still preserves inherent antioxidants.

Nitrite scavenging activity and protective effect of the Puerariae Radix and green tea extract on lead acetate and cadmium-induced liver damage in mice (갈근 및 녹차추출물의 아질산염 소거작용 및 간독성 보호효과)

  • Yun, I-Ran;Choi, You-Jeong;Heo, Jung-Ho;Choi, Chul-Yung;Seoung, Tae-Jong;Kim, Yun-Geun;Kim, Jong-Shu
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.3
    • /
    • pp.275-285
    • /
    • 2010
  • This study was designed to evaluated the nitrite scavenging activity and protective effect of the Puerariae Radix and green tea extract on lead acetate and cadmium-induced liver damage in mice. The quantitative analytical method for major antioxidants, isoflavones, puerarin, catechine and caffeine in galgun (Puerariae Radix) and green tera extract were established by HPLC. Contents of isoflavones, such as daidzin, genistin, daidzein and genistein were 4.23g/100g, 0.13g/100g, 0.07g/100g, and 0.03g/100g, and puerarin contents was 8.99g/100g, respectively. The total catechins and caffeine contents of green tea extract were 49.24g/100g and 6.53g/100g. The nitrite scavenging ability of galgun extract (pH 1.2, 100mg/ml) was 98.07% and it was higher than those of other extracts. It was the highest at the pH 1.2 and more than 64% in 25~100mg green tea extract, and was dependents on pH and concentration of the samples. The hepatoprotective effects of an aqueous extract from the root of gal gun and standard puerarin were evaluated against lead acetate and cadmium-induced liver damage in mice. Galgun extract and standard at a dose of 100mg/kg and 10mg/kg, 50mg/kg were administered orally once daily for successive 5 days and then a lead acetate and cadmium were orally at 3 hrs after the every day administration of galgun. The substantially elevated serum enzymatic activities of alanine and aspartate aminotransferase were due to lead acetate and cadmium treatment was dose dependently restored to the near normal level. In addition, galgun extract also significantly prevented the elevation of hepatic malon-dialdehyde formation in the liver of lead acetate and cadmium intoxicated mice in a dose-dependent manner. The results of this study clearly indicated that green tea and galgun extracts had nitrite scavenging ability and galgun extract had potent hepato-protective effects against lead acetate and cadmium-induced hepatic damage in mice and standard puerarin was also showed similar to the results of the galgun extracts.

Improvement of Antioxidative Activity by Enzyme Treatment and Lactic Acid Bacteria Cultivation in Black Garlic (효소 처리와 유산균 배양에 의한 흑마늘의 항산화 활성 향상)

  • Chae, Hee-Jeong;Park, Dong-Il;Lee, Sung-Chul;Oh, Chul-Hwan;Oh, Nam-Soon;Kim, Dong-Chung;Won, Sun-Im;In, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.660-664
    • /
    • 2011
  • We investigated the improvement of the antioxidative activity of black garlic with enzymatic treatment and lactic acid bacteria cultivation conditions. Celluclast, a commercially-available polysaccharide hydrolyase, was selected to obtain high total polyphenol content in a black garlic suspension. A lactic acid bacterial strain showing fast growth and high acid production in a black garlic suspension was isolated from Kimchi. This strain was identified as Lactobacillus pentosus 310-7. Enzymatically hydrolyzed black garlic was fermented using the L. pentosus 310-7 strain at $30^{\circ}C$ for 15 hr. The pH and titratable acidity achieved were 4.24 and 0.35%, respectively, after 15 hr fermentation. The viable cell population of L. pentosus 310-7 slowly increased to 7.54 log CFU/g. The polyphenolic compound content, known antioxidants, in black garlic was enhanced with Celluclast treatment and L. pentosus 310-7 cultivation. Total polyphenolic compounds were increased to approximately 60% of the initial concentration, and electron donating ability was also improved, from 39.8 to 65.9%.

Solubilization of Arabinogalactan by Extrusion from Portulaca oleracea L. and Its In Vitro Antioxidant Activity (마치현 아라비노갈락탄의 압출 수용화와 항산화 특성)

  • Choi, Ae-Jin;Jee, Ho-Kyun;Ko, Bo Sung;Kim, Yangha;Lee, Soo-Jeong;Kim, Chul-Jin;Cho, Yong-Jin;Kim, Chong-Tai
    • Food Engineering Progress
    • /
    • v.13 no.3
    • /
    • pp.169-175
    • /
    • 2009
  • Water soluble polysaccharides (WSP) and arabinogalactan of Portulaca oleracea L. (POL) were increased after extrusion and commercial cellulase treatment. Arabinose and galactose content increased more about 1.5 times than those of raw POL, and rhamnose also increased about 2.6 times in WSP. High molecular weight fraction (I) of POL depending on extrusion condition including Ext I, Ext II and Ext III degraded into low molecular weight fraction (II) about 37, 29, and 26%, respectively, ranged from 67,000-69,000 Da of molecular weight. Especially, the molecular weight and composition of WSP with extruded, were increased from 9 to 13% in low molecular weight fraction, compared to those of raw POL. Solubilization and degradation of polysaccharides were a directly propotional to specific mechanical energy in POL extrusion. WSP obtained by extrusion at Ext I and Ext II were found to be effective antioxidants in different in vitro assays with regards to 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and Trolox equivalent antioxidant capacity (TEAC). However, these results suggest that WSP obtained using extrusion and subsequent enzymatic treatment may be an effective method to produce arabinogalactan from POL and be used as a functional food ingredients.