• 제목/요약/키워드: Enzymatic Saccharification

검색결과 141건 처리시간 0.027초

Enzymatic Saccharification of Salix viminalis cv. Q683 Biomass for Bioethanol Production

  • Kim, Hak-Gon;Song, Hyun-Jin;Jeong, Mi-Jin;Sim, Seon-Jeong;Park, Dong-Jin;Yang, Jae-Kyung;Yoo, Seok-Bong;Yeo, Jin-Ki;Karigar, Chandrakant S.;Choi, Myung-Suk
    • Journal of Forest and Environmental Science
    • /
    • 제27권3호
    • /
    • pp.143-149
    • /
    • 2011
  • The possibility of employing biomass of Salix viminalis cv. Q683 as a resource of bio-energy was evaluated. The chemical analysis of S. viminalis cv. Q683 leaf biomass showed components such as, extractives (2.57%), lignin (39.06%), hemicellulose (21.61%), and cellulose (37.83%), whereas, its stem was composed of extractives (1.67%), lignin (23.54%), hemicellulose (33.64%), and cellulose (42.03%). The biomass of S. viminalis cv. Q683 was saccharified using two enzymes celluclast and viscozyme. The saccharification of S. viminalis cv. Q683 biomass was influenced by enzymes and their strengths. The optimal enzyme combination was found to be celluclast (59 FPU/g substrate) and viscozyme (24 FBG/g substrate). On saccharification the glucose from leaf and stem biomass was 7.5g/L and 11.7g/L, respectively after 72 hr of enzyme treatment. The biomass and enzyme-treated biomass served as the feedstock for ethanol production by fermentation. The ethanol production from stem and leaf biomass was 5.8 g/L and 2.2 g/L respectively, while the fermentation of the enzymatic hydrolysates yielded 5 g/L to 8 g/L bioethanol in 72 hours.

Rheological Properties and Particle Size Distribution of Northeast Mixed Hardwood for Enzymatic Saccharification Processing with High Substrates Loading

  • Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권5호
    • /
    • pp.56-65
    • /
    • 2008
  • In this paper experimental results are presented for the rheological behavior of high-solids saccharification of mixed northeast hardwood as a model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20 percent slurry concentrations with constant enzyme concentrations were performed under variable rotational speed of a viscometer (2.0 to 200 RPM) at combined temperatures (50 to $30^{\circ}C$) for the initial four hours. The viscosities of saccharification slurries observed were in the ranges of 0.024 to 0.028, 0.401 to 0.058, and 0.840 to 0.087 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20 percent initial solids (w/v) respectively. The fluid behavior of the suspensions was modeled using the power-law, the Herschel-Bulkley, the Casson, and the Bingham model. The results showed that broth slurries were pseudoplastic with a yield stress. The model slope increased and the model intercept decreased with increasing fermentation time at shear rates normal for the fermentor. The broth slurries exhibited Newtonian behavior at high and low shear rates during initial saccharification process. The solid particle size ranged from 57.8 to $70.0{\mu}m$ for $40^{\circ}C$ and from 44.0 to 57.5 11m for combined temperatures at 10, 15, and 20 percent initial solids (w/v) respectively.

꼬시래기 홍조류로부터 열산가수분해, 효소당화 및 에탄올 발효 (Thermal Acid Hydrolysis Pretreatment, Enzymatic Saccharification and Ethanol Fermentation from Red Seaweed, Gracilaria verrucosa)

  • 라채훈;최진규;강창한;선우인영;정귀택;김성구
    • 한국미생물·생명공학회지
    • /
    • 제43권1호
    • /
    • pp.9-15
    • /
    • 2015
  • 본 연구는 해조류, 꼬시래기를 발효하여 에탄올을 생산하였다. 최적 전처리 조건은 12% (w/v) 해조류 슬러리, 270 mM 황산, 121도 60분동안 실시하였다. 열산가수분해 후에, 꼬시래기 가수분해산물에 16 U/ml의 혼합효소 Viscozyme L과 Celluclast 1.5 L를 이용하여 효소당화를 수행하였다. 50.4 g/l의총단당류의농도는, 120 g dw/l 꼬시래기 슬러리로부터 열산가수분해와효소당화에 의해 총 탄수화물 60 g/l의 전환율 84.2%를 나타내었다. 꼬시래기 가수분해산물은 분리당화발효(SHF)로 에탄올 생산을 위한 기질로 사용하였다. 고농도 galactose로 순치한 Candida lusitaniae ATCC42720에 의한 에탄올 생산은 0.43의 에탄올 수율(YEtOH)인 22.0 g/l를 생산하였다. 특정 당에 순치한 효모는 혼합당의 흡수에 유용하며, 그 결과 해조류가수분해산물배지로부터 높은 에탄올 수율을 나타내었다.

Improvement of a Unified Saccharification and Fermentation System for Agaro-bioethanol Production in Yeast

  • Lee, So-Eun;Kim, Yeon-Hee
    • 한국미생물·생명공학회지
    • /
    • 제48권1호
    • /
    • pp.32-37
    • /
    • 2020
  • We improved on a unified saccharification and fermentation (USF) system for the direct production of ethanol from agarose by increasing total agarase activity. The pGMFα-NGH plasmid harboring the NABH558 gene encoding neoagarobiose hydrolase and the AGAG1 and AGAH71 genes encoding β-agarase was constructed and used to transform Saccharomyces cerevisiae 2805. NABH558 gene transcription level was increased and total agarase activity was increased by 25 to 40% by placing the NABH558 gene expression cassette upstream of the other gene expression cassettes. In the 2805/pGMFα-NGH transformant, three secretory agarases were produced that efficiently degraded agarose to galactose, 3,6-anhydro-L-galactose (AHG), neoagarobiose, and neoagarohexaose. During the united cultivation process, a maximum of 2.36 g/l ethanol from 10 g/l agarose was produced over 120 h.

Ethanol Production by Synchronous Saccharification and Fermentation of Foodwastes

  • Han, Hyo-Jeong;Kim, Seong-Duk;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.260-265
    • /
    • 2005
  • In the previous research about ethanol production, we confirmed that SFW(saccharified foodwastes) medium(0.56g-ethanol/g-glucose) is mere efficient than YM medium(0.538g-ethanol/g-glucose). Ethanol production using SFW needs large enzyme cost due to the enzymatic hydrolysis of foodwastes, although the enzymes was obtained from our economical enzyme production methods, using the intact whole culture broth of Trichoderma harzianum FJ1. Therefore, in this research we used synchronous saccharification and fermentationmethod to produce ethanol using foodwastes. Ethanol production yield was 0.45g-ethanol/g-reducing sugar in synchronous saccharification and for-mentation by a fed-batch mode.

  • PDF

효과적인 효소 소화율을 위한 볏짚 전처리 (Pretreatment of Rice Straw for Efficient Enzyme Digestibility)

  • 김성봉;김준석;이상준;이자현;강성우;김승욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.253-253
    • /
    • 2010
  • Rice straw was pretreated with aqueous ammonia in order to enhance enzyme digestibility. Soaking in ammonia aqueous (SAA) was conducted with 15% ammonia, at $60^{\circ}C$. for 24 h. Optimization of both saccharification conditions and enzyme loading of SAA rice straw was carried out. Especially enzyme loading test was performed using statistical method. Moreover proton beam irradiation (PBI) was also performed to overcome the problem which inhibit the enzyme digestibility at 1-25 kGy doses with 45 MeV of beam energy. Optimal condition for enzymatic saccharification was follows; pH 4.8, $50^{\circ}C$, 60 FPU of enzyme activity, 1:4 ratio of celluase and ${\beta}$-glucosidase. Also, optimal doses of PBI on rice straw and SAA-treated rice straw for efficient sugar recovery were found to be 3 kGy, respectively. When saccharification was performed with optimal condition, glucose conversion yield was 89% of theocratical maximum in 48 h, and 3 kGy of PBI was applied to SAA-treated rice straw, approximately 90% of the theoretical glucose yield was obtained in 12 h. The results of X-ray diffractometry (XRD) support the effect of both SAA and PBI on sugar recovery, and scanning electron microscopy (SEM) images unveiled the physical change of the rice straw surface since rugged rice straw surface was observed.

  • PDF

High-Solid Enzymatic Hydrolysis and Fermentation of Solka Floc into Ethanol

  • Um, Byung-Hwan;Hanley, Thomas R.
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1257-1265
    • /
    • 2008
  • To lower the cost of ethanol distillation of fermentation broths, a high initial glucose concentration is desired. However, an increase in the substrate concentration typically reduces the ethanol yield because of insufficient mass and heat transfer. In addition, different operating temperatures are required to optimize the enzymatic hydrolysis (50$^{\circ}C$) and fermentation (30$^{\circ}C$). Thus, to overcome these incompatible temperatures, saccharification followed by fermentation (SFF) was employed with relatively high solid concentrations (10% to 20%) using a portion loading method. In this study, glucose and ethanol were produced from Solka Floc, which was first digested by enzymes at 50$^{\circ}C$ for 48 h, followed by fermentation. In this process, commercial enzymes were used in combination with a recombinant strain of Zymomonas mobilis (39679:pZB4L). The effects of the substrate concentration (10% to 20%, w/v) and reactor configuration were also investigated. In the first step, the enzyme reaction was achieved using 20 FPU/g cellulose at 50$^{\circ}C$ for 96 h. The fermentation was then performed at 30$^{\circ}C$ for 96 h. The enzymatic digestibility was 50.7%, 38.4%, and 29.4% after 96 h with a baffled Rushton impeller and initial solid concentration of 10%, 15%, and 20% (w/v), respectively, which was significantly higher than that obtained with a baffled marine impeller. The highest ethanol yield of 83.6%, 73.4%, and 21.8%, based on the theoretical amount of glucose, was obtained with a substrate concentration of 10%, 15%, and 20%, respectively, which also corresponded to 80.5%, 68.6%, and 19.1%, based on the theoretical amount of the cell biomass and soluble glucose present after 48 h of SFF.

알칼리 전처리 백합나무(Liriodendron tulipifera L.)의 효소당화 및 발효에 의한 바이오 에탄올 생산 (Bio-ethanol Production from Alkali Prehydrolyzed Yellow Poplar (Liriodendron tulipifera L.) Using Enzymatic Saccharification and Fermentation)

  • 신수정;조대행;한심희;김용환;조남석
    • 한국산림과학회지
    • /
    • 제98권3호
    • /
    • pp.305-310
    • /
    • 2009
  • 백합나무를 원료로 바이오 에탄올을 생산하기 위하여 알칼리 가수분해 처리 후 잔재물을 상업용 혼합 셀룰라아제(Celluclast 1.5L과 Novozym 342)를 사용하여 효소당화 후, 발효하여 바이오 에탄올을 생산하였다. 알칼리 가수분해 후 51.1%의 목재 성분이 회수 되었으며, 이중 셀룰로오스가 82.2%, xylan이 17.6%와 리그닌 2.0%의 조성을 보였다. 백합나무의 알칼리 가수분해과정에서 셀룰로오스 96.9%, xylan 38.0%, 리그닌 5.7%가 잔류하였다. 알칼리 가수분해 잔류물을 상업용 혼합 셀룰라아제에 의한 효소 당화결과, 셀룰로오스의 glucose 전환율은 87.0%였으며 xylan의 xylose로의 전환율은 87.2%였다. 분해된 단당류를 발효효모를 사용하여 바이오 에탄올을 생산하였는데 Saccharomycess cerevisiae 균주는 대부분의 glucose를 발효에 사용하였고, 0.4-1.4%의 소량의 glucose만을 잔류 시킨데 대하여, xylose의 경우는 92.1-99.5%가 잔류하여 이 균주는 발효과정에서 xylose를 거의 사용하지 않았다. 24시간 발효에서 에탄올의 농도는 57.2 g/L수준이었지만 발효 균주에 의한 에탄올 소비로 인하여 48시간 및 72시간 발효에서 에탄올 농도가 각각 56.2 g/L와 54.3 g/L로 점차 감소하였다.

Ionic Liquid Pretreatment of Lignocellulosic Biomass

  • Han, Song-Yi;Park, Chan-Woo;Kwon, Gu-Joong;Kim, Nam-Hun;Kim, Jin-Chul;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • 제36권2호
    • /
    • pp.69-77
    • /
    • 2020
  • Lignocellulosic biomass has recalcitrant characteristics against chemical and biological conversion due to its structural heterogeneity and complexity. The pretreatment process to overcome these recalcitrant properties is essential, especially for the biochemical conversion of lignocellulosic biomass. In recent years, pretreatment methods using ionic liquids (ILs) and deep eutectic solvents (DESs) as the green solvent has attracted great attention because of their advantages such as easy recovery, chemical stability, temperature stability, nonflammability, low vapor pressure, and wide liquids range. However, there are some limitations such as high viscosity, poor economical feasibility, etc. to be solved for practical use. This paper reviewed the research activities on the pretreatment effect of various ILs including DESs and their co-solvents with organic solvents on the enzymatic saccharification efficiency of lignocellulosic biomass and the nanocellulose preparation from the pretreated products.

Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea

  • Sunwoo, In Yung;Nguyen, Trung Hau;Sukwong, Pailin;Jeong, Gwi-Teak;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.401-408
    • /
    • 2018
  • The waste seaweed from Gwangalli beach, Busan, Korea was utilized as biomass for ethanol production. Sagassum fulvellum (brown seaweed, Mojaban in Korean name) comprised 72% of the biomass. The optimal hyper thermal acid hydrolysis conditions were obtained as 8% slurry contents, 138 mM sulfuric acid, and $160^{\circ}C$ of treatment temperature for 10 min with a low content of inhibitory compounds. To obtain more monosaccharides, enzymatic saccharification was carried out with Viscozyme L for 48 h. After pretreatment, 34 g/l of monosaccharides were obtained. Pichia stipitis and Pichia angophorae were selected as optimal co-fermentation yeasts to convert all of the monosaccharides in the hydrolysate to ethanol. Co-fermentation was carried out with various inoculum ratios of P. stipitis and P. angophorae. The maximum ethanol concentration of 16.0 g/l was produced using P. stipitis and P. angophorae in a 3:1 inoculum ratio, with an ethanol yield of 0.47 in 72 h. Ethanol fermentation using yeast co-culture may offer an efficient disposal method for waste seaweed while enhancing the utilization of monosaccharides and production of ethanol.