Bio-ethanol Production from Alkali Prehydrolyzed Yellow Poplar (Liriodendron tulipifera L.) Using Enzymatic Saccharification and Fermentation

알칼리 전처리 백합나무(Liriodendron tulipifera L.)의 효소당화 및 발효에 의한 바이오 에탄올 생산

  • Shin, Soo-Jeong (Wood and Paper Science, College of Agricultural, Life & Environment Sciences, Chungbuk National University) ;
  • Cho, Dae Haeng (Department of Chemical Engineering, Kwangwoon University) ;
  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Young Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Cho, Nam-Seok (Wood and Paper Science, College of Agricultural, Life & Environment Sciences, Chungbuk National University)
  • 신수정 (충북대학교 목재 종이과학과) ;
  • 조대행 (광운대학교 화학공학과) ;
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 김용환 (광운대학교 화학공학과) ;
  • 조남석 (충북대학교 목재 종이과학과)
  • Received : 2009.03.30
  • Accepted : 2009.05.18
  • Published : 2009.06.30

Abstract

Yellow poplar was selected a promising biomass resources for bio-ethanol production through alkali prehydrolysis, enzymatic saccharification and fermentation using commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 mixtures) and fermenting yeast. In alkali prehydrolysis, 51.1% of Yellow poplar biomass remained as residues, which chemical compositions were 82.2% of cellulose, 17.6% of xylan and 2.0% of lignin. In alkali prehydrolysis process, 96.9% of cellulose, 38.0% of xylan and 5.7% of lignin were remained. Enzymatic saccharification by commercial cellulases led to 87.0% of cellulose to glucose and 87.2% of xylan to xylose conversion. Produced glucose and xylose were fermented with fermenting yeast (Saccharomycess cerevisiae), which resulted in selective fermentation of glucose only to bio-ethanol. Residual monosaccharides after fermentation were consisted to 0.4-1.4% of glucose and 92.1-99.5% of xylose. Ethanol concentration was highest for 24 h fermentation as 57.2 g/L, but gradually decreased to 56.2 g/L for 48 h fermentation and 54.3 g/L for 72 h fermentation, due to the ethanol consumption by fermenting yeast.

백합나무를 원료로 바이오 에탄올을 생산하기 위하여 알칼리 가수분해 처리 후 잔재물을 상업용 혼합 셀룰라아제(Celluclast 1.5L과 Novozym 342)를 사용하여 효소당화 후, 발효하여 바이오 에탄올을 생산하였다. 알칼리 가수분해 후 51.1%의 목재 성분이 회수 되었으며, 이중 셀룰로오스가 82.2%, xylan이 17.6%와 리그닌 2.0%의 조성을 보였다. 백합나무의 알칼리 가수분해과정에서 셀룰로오스 96.9%, xylan 38.0%, 리그닌 5.7%가 잔류하였다. 알칼리 가수분해 잔류물을 상업용 혼합 셀룰라아제에 의한 효소 당화결과, 셀룰로오스의 glucose 전환율은 87.0%였으며 xylan의 xylose로의 전환율은 87.2%였다. 분해된 단당류를 발효효모를 사용하여 바이오 에탄올을 생산하였는데 Saccharomycess cerevisiae 균주는 대부분의 glucose를 발효에 사용하였고, 0.4-1.4%의 소량의 glucose만을 잔류 시킨데 대하여, xylose의 경우는 92.1-99.5%가 잔류하여 이 균주는 발효과정에서 xylose를 거의 사용하지 않았다. 24시간 발효에서 에탄올의 농도는 57.2 g/L수준이었지만 발효 균주에 의한 에탄올 소비로 인하여 48시간 및 72시간 발효에서 에탄올 농도가 각각 56.2 g/L와 54.3 g/L로 점차 감소하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Bobleter, O. 1994. Hydrothermal degradation of polymers derived from plants. Progress in Polymer Science 19: 797-841 https://doi.org/10.1016/0079-6700(94)90033-7
  2. Clark, T.A. and K.L. Mackie. 1987. Steam explosion of the softwood Pinus radiata with sulphur dioxide addition. I. Process optimization. J. Wood Chemistry Technology 7: 373-403 https://doi.org/10.1080/02773818708085275
  3. Dale, B.E., C.K. Leong, T.K. Pham, V.M. Esquivel, I. Rios and V.M. Latimer. 1996. Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technoogy 56: 111-116 https://doi.org/10.1016/0960-8524(95)00183-2
  4. Dale, B.E., J. Weaver and F.M. Byersm. 1999. Extrusion processing for ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology 77: 5-49 https://doi.org/10.1385/ABAB:77:1-3:5
  5. Hamelinck, C.N., G. van Hooijdonk and A.P.C. Faaij. 2005. Ethanol from lignocellulosic biomass; technoeconomic performance in short-, middle-, and long term. Biomass and Bioenergy 28: 384-410 https://doi.org/10.1016/j.biombioe.2004.09.002
  6. Hemdriks A.T. and G. Zeeman. 2008. Pretreatments to enhance the digestability of lignocellulosic biomass. Bioresource Technology 100: 10-18 https://doi.org/10.1016/j.biortech.2008.05.027
  7. Koullas, D.P., P. Christakopoulos, D. Kekos, B.J. Macris and E.J. Koukios. 1992. Correlating the effect of pretreatment on the enzymatic hydrolysis of straw. Biotechnology and Bioengineering 39: 113-116 https://doi.org/10.1002/bit.260390116
  8. Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg,K. Stenberg, G. Zacchi and N.O. Nilverbrant, 1998.The generation of fermentation inhibitors during dilute acid hydrolysis of softwood, Enzyme and Microbial Technology 24: 151-159 https://doi.org/10.1016/S0141-0229(98)00101-X
  9. Lee, Y.Y, Z.W. Wu and R.W. Torget. 2000. Modeling of countercurrent shrinkage-bed reactor in dilute-acid total-hydrolysis of lignocellulosic biomass. Bioresource Technology 71: 29-39 https://doi.org/10.1016/S0960-8524(99)00053-X
  10. Lee, Y.Y., P. Iyer and R.W. Torget. 1999. Dilute-acid hydrolysis of lignocellulosic biomass. Advances in Biochemical Engineering and Biotechnology 65: 93-115
  11. McKibbins, S.W., J.F. Harris, J.F. Saeman and W.K. Neill. 1962. Kinetics of the acid-catalyzed conversion of glucose to 5-hydroxymethyl-2-furaldehyde and levulinic acid, Forest Prod. J. 12(1): 17-23
  12. Mok, W.S.L. and M.J. Jr. Antal. 1992. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Industrial and EngineeringChemistry Research 31: 1157-1161 https://doi.org/10.1021/ie00004a026
  13. hgren, K., R. Bura, J. Saddler and G. Zacchi. 2007 Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology 98: 2503-2510 https://doi.org/10.1016/j.biortech.2006.09.003
  14. Root, D.F., J.F. Saeman, J.F. Harris and W.K. Neill. 1959, Kinetics of the acid catalyzed conversion of xylose to furfural, Forest Prod. J. 9(5): 158-164
  15. Saddler, J.N, L.P. Ramosand and C. Brueuil. 1993. Steam pretreatment of lignocelluosic material enhanced enzymatic hydrolysis. pp. 73-91. In: Bioconversion of Forest and Agricultural Plant Wastes (ed. J.N. Saddler). CAB International, Wallingford, UK
  16. Shin, S.-J. and N.-S. Cho. 2008. Conversion factors for carbohydrate analysis by hydrolysis and 1H-NMR spectroscopy. Cellulose 15: 255-260 https://doi.org/10.1007/s10570-007-9156-6
  17. Shin, S.-J., G.-S. Han, I.-G. Choi and S.-H. Han. 2008. Chemical characterization of industrial hemp (Cannabis sativa) biomass as biorefinery feedstock. Korean Journal of Plant Resource 21: 222-225
  18. Singleton, V.L., R.O. Orthofer and R.M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of FolinCiocalteu reagent. Methods Enzymol. 299: 152-178 https://doi.org/10.1016/S0076-6879(99)99017-1
  19. Sun, Y. and J. Cheng. 2002, Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresources Technology 83: 1-11 https://doi.org/10.1016/S0960-8524(01)00212-7
  20. Yang, B. and C.E. Wyman. 2004. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering 86: 88-98 https://doi.org/10.1002/bit.20043
  21. 류근옥, 김홍은, 2003, 백합나무 양묘기술 개발에 관한 연구, 한국임학회지 92(3): 236-245
  22. 민두식, 조남석, 1990, 목재당화학, 선진문화사
  23. 송승구, 이민규, 이윤영, 1986, 소량의 수분을 함유한 목재 셀룰로오즈의 산촉매 당화 및 생성당의 향류식 추출, 화학공학 24(5): 351-359
  24. 임기표. 2003. 목재펄프, 제지, 환경, 화학. 전남대 출판부, pp.265-272