• Title/Summary/Keyword: Enzymatic Hydrolysis

Search Result 705, Processing Time 0.026 seconds

functional Properties of Sesame Protein Concentrate as Degree of Hydrolysis by Enzyme Treatments (효소처리한 참깨박 농축단백질의 가수분해정도에 따른 기능성)

  • 윤시혜;박정륭;전정례
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.4 no.3
    • /
    • pp.87-96
    • /
    • 1994
  • This study was carried out to investigate the effect of hydrolysis by proteolytic enzymes on the functional properties of sesame protein concentrate. Sesame protein concentrate was hydrolyzed with papain, pepsin and trypsin to obtain 10% and 20% degree of hydrolysis. The nirogen solubility in water was increased with increasing the degree of hydrolysis. Bulk density was increased by enzymatic hydrolysis but water absorption capacity was increased only in the case of pepsin-hydrolyzed SPC. Higher fat absorption capacity was found in SPC with 10% DH than SPC with 20% DH. Emulsifying activity was also increased by enzymatic hydrolysis except SPC with 10% DH by papain.

  • PDF

Enzymatic hydrolysis and micro-structure of ozone treated wood meal (오존 처리에 의한 목재 세포벽의 미세구조변화와 효소가수분해)

  • Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.67-73
    • /
    • 2010
  • Pine (Pinus densiflora) and aspen (Populus euramericana) wood meals were treated with ozone at various time schedule in acidic condition. The lignin contents and surface area of the ozone treated wood meals were determined and the enzymatic hydrolysis rate of ozonated wood meals was evaluated. The feasibility of enzymatic hydrolysis of the ozone treated wood meal was obviously influenced with the degree of delignification. After ozone treatment of wood meal for 10min, total pore volume were slightly increased in the surface of wood meal. When wood meals were treated with ozone longer than 10min, few change in the pore volume was observed. However, the area of over $50{\AA}$ of pore size is increased with ozonation time. As a conclusion, the rate of enzymatic hydrolysis of wood is more effective with the pore size distribution than the total pore volume.

Biodegradability of Polylactic Acid Fabrics by Enzyme Hydrolysis and Soil Degradation

  • Lee, So Hee
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • The biodegradability of polylactic acid(PLA) fabrics was evaluated by two methods: enzyme and soil degradation. Three different enzymes were selected to evaluate. Degradation times were measured at optimal enzyme treatment conditions. Biodegradation by enzymatic hydrolysis was compared with soil degradation. As a result, biodegradation created cracks on the fiber surface, which led to fiber thickening and shortening. In addition, new peak was observed at $18.5^{\circ}$ by degradation. Moreover, cracks indicating biofragmentation were confirmed by enzyme and soil degradation. By enzyme and soil degradation, the weight loss of PLA fabrics was occurred, there through, the tensile strength decreased about 25% by enzyme hydrolysis when 21 days after, and 21.67% by soil degradation when 60 days after. Furthermore, the biodegradability of PLA fabrics by enzymatic and soil degradation was investigated and enzymatic degradation was found to be superior to soil degradation of PLA fabrics. Among the three enzymes evaluated for enzymatic degradation, alcalase was the most efficient enzymes. This study established the mechanism of biodegradation of PLA nonwovens, which might prove useful in the textile industry.

Optimum Reaction Condition of Enzymatic Hydrolysis for Production of Reducing Sugar from Enteromorpha intestinalis (창자파래로부터 환원당 생산을 위한 효소가수분해의 최적 반응조건)

  • Kim, A-Ram;Kim, Dong-Hyun;Jeong, Gwi-Taek
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.53-57
    • /
    • 2015
  • In this study, the production of total reducing sugar from macro green-algae Enteromorpha intestinalis by enzymatic hydrolysis was investigated. As a result of enzymatic hydrolysis using 13 kind commercial enzymes, the highest yield of 8.75% was obtained from Viscozyme L, which is multi-enzyme complex such as cellulase, arabanase, beta-glucanase, hemicellulase and xylanase. As a control, only 0.33% and 0.27% yield were obtained from 1% sulfuric acid and 0.05 M citrate buffer (pH 4.8), respectively. In the case of enzyme mixture, the mixture of $Viscozyme^{(R)}$ L and $Cellic^{(R)}$ CTec2 (1:1) was presented the highest yield of 10.67%. Finally, the 14.99% yield was obtained at 36 hr under the condition of 10% biomass and 30% enzyme mixture.

A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review (목질바이오매스의 효소 당화 기술에 관한 연구 동향)

  • Kim, Yeong-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into sugar that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of the enhancement of enzymatic hydrolysis for lignocellulosic biomass after pretreatment in bioethanol production process.

A Comparison of Silk Fibroin Hydrolysates by Hydrochlonic Acis and Proteolytic Enzymes

  • Sh. R. Madyarov;Yeo, Joo-Hong;Lee, Kwang-Gill;Lee, Yong-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2001
  • Enzymatic hydrolysis of different forms of silk fibroin (soluble, gel and insoluble forms) by industrial and commercial enzyme preparations to obtain aqueous and powdered silk fibroin in relatively mild conditions was investigated. A mono-enzymatic hydrolysate systems were tested for hydrolysis of water-soluble form of fibroin as most productive form of protein substrate. Insoluble forms of substrate usually were hydrolyzed less effective. In some cases from soluble fibroin substrate gel was formed during hydrolysis process. This hindered intermixing and decreased rates of hydrolysis. Insoluble sediments were formed in enzymatic hydrolysates in other cases. These sediments and also sediment after chemical hydrolysis were purified and tested on amino acids content for comparison. Sediments formation in these conditions are considered as pure tyrosine isolation method. Obtained hydrolysates were characterized by gel-chromatography analysis and other standard biochemical methods. Possibility of application of enzymatic hydrolysis for preparation of silk fibroin hydrolysates is discussed.

  • PDF

Design of Pretreatment Process in Cellulosic Ethanol Production (목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계)

  • Kim, Hyungjin;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.511-514
    • /
    • 2015
  • A pretreatment process of cellulose decomposition to a monosaccharide plays an important role in the cellulosic ethanol production using the lignocellulosic biomass. In this study, a cellulosic ethanol was produced by using acidic hydrolysis and enzymatic saccharification process from the lignocellulosic biomass such as rice straw, sawdust, copying paper and newspaper. Three different pretreatment processes were compared; the acidic hydrolysis ($100^{\circ}C$, 1 h) using 10~30 wt% of sulfuric acid, the enzymatic saccharification (30 min) using celluclast ($55^{\circ}C$, pH = 5.0), AMG ($60^{\circ}C$, pH = 4.5), and spirizyme ($60^{\circ}C$, pH = 4.2) and also the hybrid process (enzymatic saccharification after acidic hydrolysis). The yield of cellulosic ethanol conversion with those pretreatment processes were obtained as the following order : hybrid process > acidic hydrolysis > enzymatic saccharification. The optimum fermentation time was proven to be two days in this work. The yield of cellulosic ethanol conversion using celluclast after the acidic hydrolysis with 20 wt% sulfuric acid were obtained as the following order : sawdust > rice straw > copying paper > newspaper when conducting enzymatic saccharification.

Study on the Change of Antioxidant Activity by Enzymatic Hydrolysis in Sophora japonica Linne, Houttuynia cordata Thunberg, Leonurus japonicus Houttuyn (괴화, 어성초, 익모초에서 효소 분해에 의한 항산화 활성 변화 연구)

  • Cha, Bae Cheon
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Objectives: The enzymatic hydrolysis is one of the processing methods that improve its effectiveness on medicinal herbs. In this research, changes in ingredients and activity by enzymatic hydrolysis were studied. Methods: For this study, a carbohydrate hydrolase such as viscozyme, which converts glycosides to aglycone, was applied to induce constituent changes in Sophora japonica Linne, Houttuynia cordata Thunberg and Leonurus japonicus Houttuyn. Changes in antioxidant activity were measured using the 1,1-diphenyl-2-picrylhydrazl (DPPH) method, and changes in ingredients were analyzed by high performance liquid chromatography. Results: As a result of enzymatic hydrolysis, the content of quercetin was increased from 1.26 mg/g to 29.66 mg/g in Sophora japonica Linne, from 0 mg/g to 0.66 mg/g in Houttuynia cordata Thunberg and from 0.43 mg/g to 0.71 mg/g in Leonurus japonicus Houttuyn. As a result of the antioxidant experimentation, the IC50 of Sophora japonica Linne decreased from 5 ug/ml (MeOH extract) and 9.1 ug/ml (EtOAc fraction) to 3.0 ug/ml, Houttuynia cordata Thunberg decreased from 15.6 ug/ml (MeOH extract) and 13.6 ug/ml (EtOAc fraction) to 11.2 ug/ml, and Leonurus japonicus Houttuyn decreased from 14.4 ug/ml (MeOH extract) and 12.6 ug/ml (EtOAc fraction) to 10.2 ug/ml. Conclusion: In conclusion, it was confirmed that glycoside rutin contained in the three medicinal herbs was changed to quercetin which is the aglycone, by the enzymatic hydrolysis using viscozyme. In terms of antioxidant activity, Sophora japonica Linne showed a significant antioxidant activity value that closes to the control group butylated hydroxyanisole. Houttuynia cordata Thunberg and Leonurus japonicus Houttuyn showed a minor increase in antioxidant activity.

Impact of electron beam irradiation on enzymatic saccharification of yellow poplar (Liriodendron tulipifera L) (전자빔 조사 처리가 백합나무 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Sung, Yong-Joo;Han, Gyu-Seong;Cho, Nam-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.198-201
    • /
    • 2008
  • The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of yellow poplar with doses of 0$\sim$450 kGy. The higher irradiation dose resulted in the more degradation of hardwood biomass not only from carbohydrates but also from lignin. This changes originated from the irradiation resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The more improvement on enzymatic hydrolysis by the irradiation was found in the xylan than in the cellulose of yellow poplar.

  • PDF

Pretreatment of Wastepaper using Aqueous Glycerol under High Pressure to Enhance Enzymatic Hydrolysis (효소 가수분해 향상을 위해 고압조건에서 Glycerol 수용액을 사용한 폐지의 전처리)

  • Seo, Dong Il;Kim, Chang-Joon;Kim, Sung Bae
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.193-198
    • /
    • 2014
  • Pretreatment of wastepaper using aqueous glycerol under high pressure was studied to enhance the enzymatic hydrolysis. The pretreatment was conducted over a wide range of conditions including temperatures of $150{\sim}170^{\circ}C$, sulfuric acid concentrations of 0.5~1.5%, and reaction times of 30~90 minutes. After the effect of glycerol concentration on the pretreatment performance was investigated, 70% glycerol was selected. As glycerol concentration was increased, higher digestibility was achieved due to higher lignin removal. The optimum condition was found to be around $160^{\circ}C$, 1%, and 60 minutes. At this condition, 60% and 35% of hemicellulose and lignin, respectively, were removed, while only 5% of cellulose was lost. The enzymatic digestibility was 76%, meaning that 73% of the glucan present in the initial substrate was recovered as glucose after enzymatic hydrolysis. Also, it was found that the temperature and acid concentration than the reaction time were more strongly related to the compositional removals and enzymatic digestibility.