• Title/Summary/Keyword: Environmentally friendly Materials

Search Result 403, Processing Time 0.032 seconds

Development of Shielding using Medical Radiological Contrast Media; Comparison Analysis of Barium Sulfate Iodine Shielding ability by Monte Carlo Simulation (의료방사선 조영제를 이용한 차폐체 개발; 몬테카를로 시뮬레이션을 통한 황산바륨과 요오드의 차폐능 비교분석)

  • Kim, Seon-Chil
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.329-334
    • /
    • 2017
  • The purpose of this study is to estimating the possibility of manufacturing radiation shielding sheet by searching for environmentally friendly materials suitable for medical environment of medical radiation shielding. There are many tungsten products which are currently used as shielding materials in place of lead, but there are small problems in the mass production of lightweight shielding sheets due to economical efficiency. To solve these problems, a lightweight, environmentally friendly material with economical efficiency is required. In this study, Barium sulphate and Iodine were proposed. Both materials are already used as contrast medias in radiography, and it is predicted that the shielding effect will be sufficient in a certain region as a shielding material because of the characteristic of absorbing radiation. Therefore, in this study, we used a Monte Carlo simulation to simulate radiation shielding materials. When it is a contrast agent such as Barium sulfate and Iodine, the radiation absorption effect in the high energy region appears greatly, and the effectiveness of the two shielding substance in the energy region of the star with thickness of 120 kVp is also evaluated in the medical radiation imaging region. Simulated estimation results it was possible to estimate the effectiveness of shielding for all two substances. Iodine has higher shielding effect than barium sulfate, 0.05 mm thick appears great effect. Therefore, the Monte Carlo simulation confirms that iodine, which is a radiological contrast agent, is also usable as barium sulfate in the production of radiation shielding sheets.

The Study on Reduction of Hazardous Materials using Eco-friendly Charcoal Composite Sheet (친환경 활성탄 복합시트의 유해물질 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2018
  • Recently, various environmentally friendly products have been developed for improving the indoor air quality while pursuing a well-being nature-friendly healthy life as a core value. In this research, we not only solve the problems of existing environmentally friendly paints, but also developed a charcoal composite seats that can reduce radon, which is a natural radioactive substance, and evaluated the reduction effect of radon, formaldehyde and volatile organic compounds. In the charcoal composite seats, a sodium silicate emulsion and charcoal were mixed to prepare an charcoal liquid coating material, and the composite seats was fabricated by air-spray coating method. In order to analyze the hazardous substance reduction performance of the fabricated charcoal composite seats, radon was designed to comply with the Ministry of the Environment standard, formaldehyde and volatile organic compounds were designed to comply with KCL-FIR-1085 standard. As a result of the experiment, the fabricated charcoal composite seats was evaluated as having a radon reduction capability of about 90.8% from 20 hours, formaldehyde and volatile organic compounds were 3 hours, and the reduction capability of 96.7% and 96.6% was found respectively. It is considered that these results can be utilized as basic data at the time of product development for improvement of indoor air quality.

Controlling Effect of Some Environmentally Friendly Agents on Garlic Leaf Blight in Garlic (마늘 잎마름병에 대한 친환경제제 방제효과)

  • Ryu, Young-Hyun;Huh, Chang-Seok;Kim, Dong-Geun;Yeon, Il-Kwon;Jo, Woo-Sik;Ryu, Jung-A
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.2
    • /
    • pp.347-357
    • /
    • 2015
  • This experiment was conducted to test the efficiency of environmentally friendly materials for controlling garlic leaf blight by Stemphylium botryosum. Fifty five kinds of environmental friendly control agents are obtained from commercial market and are tested for spore germination using 96 well plate and among them, five agents (copper-, sulfur-, medinal herb extract-, sulfur+sodium bicarbonate- and oligo chitosan based compound) are selected for field test from 2012 and 2013 year. With reference of 2012 year test result, copper and oligo chitosan based compounds are chosen as 2013 year test. When the first symptoms were appeared early May season and environmental friendly control agents are applied as prompt as possible, the control value of copper and oligo chitosan based agents are 54% and 90% respectively as compared to the occasion of chemical agent Antracol WP (propineb 70%) and yield of bulbs are increased by 16% and 34% against untreated control and marketable garlic bulb yield were 79% and 95% against Antracol WP treatment, respectively. From this result, oligo chitosan based compound can be a good organic control agent candidate for garlic leaf blight disease in organic garlic cultivation.

A Study on the Development Type of Component Joint Design for Environment Friendly Multi Housing Remodeling-Living Room (I) (공동주택의 친환경 리모델링을 위한 부품접합부 개선방안의 유형화에 관한 연구(I);거실 및 침실을 중심으로)

  • Lim, Seok-Ho;Kim, Soo-Am;Hwang, Eun-Kyoung;Yun, Mae-Han
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.366-369
    • /
    • 2006
  • Multi Housing design has not considered the remodeling even at the beginning of the construction. This severely hindered systematic maintenance, providing fundamental causes of consuming society. In general, in about 20 years when the buildings become too old, they are brought down or removed with a trail of waste left behind. In addition, since the current remodeling or future remodeling type is a general remodeling that leaves only a frame, some question the role of the remodeling as a solution to the reconstruction from economically and environmentally efficient aspects. This study intends to find a solution for long-life span multi-family housing design, promoting sequential remodeling by stating the life cycle of components. Problems were identified by analyzing joints, design and construction of multi-family housing based on the previous researches. Conclusion from characterization of the design plan according to joint parts can be summarized as the following firstly, the problem of the wet was seen in joints between the structure and a finishing materials and ones between separate finishing materials. Secondly, the problem of overlap was frequently seen in joints between the structure and a door/window, ones between a door/window and a finishing materials, and ones between a finishing materials and an electrical/mechanical device.

  • PDF

Desalting of tobacco extract using electrodialysis

  • Ge, Shaolin;Li, Wei;Zhang, Zhao;Li, Chuanrun;Wang, Yaoming
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.341-353
    • /
    • 2016
  • Papermaking reconstituted tobacco is an important strategy for recycling the waste tobacco residues. To indentify the influences of the inorganic components on harmful components delivery in cigarette smoke, a self-made electrodialysis stack was assembled to desalt the tobacco extract. The influences of the applied current and extract content on the removal rate of the inorganic ions were investigated. Results indicated that the applied current was a dominant impact on the desalination performance. High currents lower than the limiting current density could accelerate the desalting efficiency but cause higher energy consumption. A current of 2 A, or current density of ${\sim}11mA{\cdot}cm^{-2}$, was an optimal choice by considering both the energy consumption and desalting efficiency. A 20% tobacco extract was an appropriate content for the electrodialysis process. More than 90% of inorganic ions could be removed under the optimum condition. The preliminary result indicated that removal of inorganic components was beneficial to decrease the harmful component delivery in cigarette smoke. Naturally, ED is an environmentally friendly and high-effective technology for desalting the tobacco extract.

Re-synthesis and Electrochemical Characteristics of LiFePO4 Cathode Materials Recycled from Scrap Electrodes

  • Kim, Hyung Sun;Shin, Eun Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.851-855
    • /
    • 2013
  • This paper describes an environmentally friendly process for the recovery of $LiFePO_4$ cathode materials from scrap electrodes by a simple thermal treatment method. The active materials were easily separated from the aluminum substrate foil and polymeric binders were also decomposed at different temperatures ($400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$) for 30 min under nitrogen gas flow. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman spectroscopy, Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical properties of the recycled $LiFePO_4$ cathode were evaluated by galvanostatic charge and discharge modes. The specific charge/discharge capacities of the recycled $LiFePO_4$ cathode were similar to those of the original $LiFePO_4$ cathode. The $LiFePO_4$ cathode material recovered at $500^{\circ}C$ exhibits a somewhat higher capacity than those of other recovered materials at high current rates. The recycled $LiFePO_4$ cathode also showed a good cycling performance.

Effects of Porous Microstructure on the Electrochemical Properties of Si-Ge-Al Base Anode Materials for Li-ion Rechargeable Batteries (리튬이차전지용 다공성 Si-Ge-Al계 음극활물질의 전기화학적 특성)

  • Cho, Chung Rae;Kim, Myeong Geun;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.24-28
    • /
    • 2017
  • Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.

Compressive Strength Properties and Freezing and Thawing Resistance of CSG Materials (CSG 재료의 압축강도 특성 및 동결융해 저항성)

  • Yeon, Kyu-Seok;Kim, Young-Ik;Hyun, Sang-Hoon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which that can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the unconfined compressive strength properties and freezing and thawing resistance of CSG materials with unit cement content. The three types of CSG-80, CSG-100 and CSG-120 with cement content were designed to evaluate the optimum water content, dry density, strength, stress-strain, micro structure and durability factor. As the results, the optimum water content ratio with cement content showed almost similar tendency, and the unconfined compressive strength and dry density increased as cement content increases. The strength ratio of 7 days for 28 days were in the range of 55~61 % and the strain ratio in stress-strain curve were in the range of 0.8~1.6 % nearby maximum strength in 28 days. It is expected that this study will contribute to increasing application of CSG method as well as to increasing the utilizing of CSG materials as a environmentally friendly CSG method.

Development of Eco Cementitious Building Finishing Materials Modified with Bamboo Charcoal (대나무 활성탄 함유 시멘트계 재료의 친환경 건축마감재로서의 개발을 위한 기초적 연구)

  • Park, Dong-Cheon;Kwon, Sung-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.452-458
    • /
    • 2011
  • Bamboo is representing environmentally friendly building finishing materials as proven in the former researches. The purpose of this study is to evaluate the application properties of cementitious materials modified with bamboo charcoal as building finish materials. Flow test in fresh condition was conducted to assess the workability. Compressive and bending strength were measured after harding. As the thermal properties, thermal conductivity and density were measured. The properties were surpassing over them in case of using the pine charcoal in every tests. The thermal conductivity of them increased with the modified ratio. After the modified ratio 50%, the thermal conductivity decreased. Insolation and absorption performance is due to the lower density by modification of bamboo charcoal.

Combined Heat Treatment Characteristics of Cast Iron for Mold Materials (금형재료용 주철강의 복합열처리 특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.364-370
    • /
    • 2011
  • Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.