• 제목/요약/키워드: Environmental tolerance

Search Result 639, Processing Time 0.029 seconds

Genetic interaction of Sub1A and Pup1 in rice

  • Shin, Na-Hyun;Yoo, Soo-Cheul;Chin, Joong Hyoun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.147-147
    • /
    • 2017
  • Rice is one of the major staple food in Asia, covering around half of the world population. More than 40% of rice cultivation area are subject to abiotic stresses such as drought, submergence and phosphate deficiency. Pyramiding useful genes into elite variety is a promising strategy to develop tolerance varieties to multiple abiotic stresses. However, some genes are not functionally compatible when they are introgressed into the same elite variety. Here, we tested the functional compatibility of Sub1 and Pup1, major QTLs for tolerance to submergence and phosphate (P)-deficiency conditions, respectively. Phenotypic analysis revealed that IR64-Sub1 Pup1(SP1) plants harboring both Sub1 and Pup1 QTLs showed significant tolerance to submerged conditions, similarly in IR64-Sub1 (Sub1) plant, while SP1 plants failed to tolerate to P-deficiency conditions; only IR64-Pup1 (Pup1) showed strong P-deficiency tolerance phenotype. In submerged conditions, the expression levels of Sub1A and PSTOL1, major genes for Sub1 and Pup1 QTLs, respectively, were not significantly different in between Pup1 and SP1 plants. On the other hand, the expression of both Sup1A and PSTOL1 was significantly downregulated in P-deficiency conditions, suggesting that Sub1 and Pup1 repressed gene expression each other in P-deficiency conditions. These results suggest Pup1 does not compromise the Sub1 function in submerged conditions while Sub1 suppresses the function of Pup1 in (P)-deficient condition, possibly by regulating transcript level of Pup1. In conclusion, Sub1 and Pup1 are functionally compatible in terms of submergence tolerance but not in P-deficiency conditions. Further analysis need to be performed to elucidate how Sup1 suppresses the function of Pup1 in P-deficiency conditions.

  • PDF

Estimation of the genetic milk yield parameters of Holstein cattle under heat stress in South Korea

  • Lee, SeokHyun;Do, ChangHee;Choy, YunHo;Dang, ChangGwon;Mahboob, Alam;Cho, Kwanghyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.334-340
    • /
    • 2019
  • Objective: The objective of this study was to investigate the genetic components of daily milk yield and to re-rank bulls in South Korea by estimated breeding value (EBV) under heat stress using the temperature-humidity index (THI). Methods: This study was conducted using 125,312 monthly test-day records, collected from January 2000 to February 2017 for 19,889 Holstein cows from 647 farms in South Korea. Milk production data were collected from two agencies, the Dairy Cattle Genetic Improvement Center and the Korea Animal Improvement Association, and meteorological data were obtained from 41 regional weather stations using the Automated Surface Observing System (ASOS) installed throughout South Korea. A random regression model using the THI was applied to estimate genetic parameters of heat tolerance based on the test-day records. The model included herd-year-season, calving age, and days-in-milk as fixed effects, as well as heat tolerance as an additive genetic effect, permanent environmental effect, and direct additive and permanent environmental effect. Results: Below the THI threshold (${\leq}72$; no heat stress), the variance in heat tolerance was zero. However, the heat tolerance variance began to increase as THI exceeded the threshold. The covariance between the genetic additive effect and the heat tolerance effect was -0.33. Heritability estimates of milk yield ranged from 0.111 to 0.176 (average: 0.128). Heritability decreased slightly as THI increased, and began to increase at a THI of 79. The predicted bull EBV ranking varied with THI. Conclusion: We conclude that genetic evaluation using the THI function could be useful for selecting bulls for heat tolerance in South Korea.

Optimization of Geometric Dimension & Tolerance Parameters of Front Suspension System for Vehicle Pulls Improvement (차량 쏠림 개선을 위한 전륜 현가시스템의 기하공차 최적화)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.903-912
    • /
    • 2009
  • This study is focused on simulation-based dimensional tolerance optimization process (DTOP) to minimize vehicle pulls by reduction of dimensional variation in front suspension system. In previous studies, the effect of tires and wheel alignment sensitivity have mainly been investigated to eliminate vehicle pulls in nominal design condition without allocating optimal tolerance level for selected components, among various factors regarding vehicle pulls such as vehicle design parameters, vehicle weight balance, tires, and environmental factors. Unfortunately, there are wide variations in the real vehicle, and these have impacted actual vehicle pulls, especially wheel alignment effects from suspension geometry variation has not been considered in the previous studies. In the tolerance design of suspension, tolerance variables with the uncertainty such as parts dimensional variation, assembly process, datum position and direction, and assembly tool tolerance has a great influence on the variation of the suspension dimensional performances. This study introduces total vehicle pull prediction model in considering major key factors for vehicle pull sensitivity. The Monte Carlo-based tolerance analysis model using Taguchi robust method is developed to optimize dimensional tolerance parameters, satisfying on the target variation level.

Environmental risk Evaluation of the Transgenic Brassica napus with Glufosinate.ammonium-tolerance Gene (Glufosinate.ammonium 내성유전자를 도입한 형질전환 유채의 환경에 대한 안전성평가)

  • 김민경;정형진;이인중
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.176-179
    • /
    • 1997
  • Environmental risk evaluation of transgenic Brassica napus introduced with glufosinate$.$ammonium-tolerance gene was carried out in a field. It is revealed that there was no difference between transgenic and non-transgenic B. napus for characteristics of ecology and morphology. Transgenic plants did not fertilize to any related Brassica species.

  • PDF

An Evaluation of Plant Growth Promoting Activities and Salt Tolerance of Rhizobacteria Isolated from Plants Native to Coastal Sand Dunes (해안사구의 토착식물로부터 분리된 근권세균의 내염능과 식물성장촉진능 평가)

  • Hong, Sun Hwa;Lee, Mi Hyang;Kim, Ji Seul;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.261-267
    • /
    • 2012
  • Coastal sand dunes are important for ecosystems due to the variety of rare species that can be found in this kind of habitat, and the beautiful landscapes they create. For environmental remediation, a potential strategy is phytoremediation using the symbiotic relationship of plants and microbes in the rhizosphere, which has proven ecologically sound, safe, and cost effective. Ninety-five colonies were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Rorippa islandica, Rumex crispus, Artemisia princeps var. orientalis, Lilium sp Stellaria media, and Gramineae. These colonies were then tested for plant growth promoting activities (PGPAs) such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderphores synthesis ability. In addition, salt tolerance was evaluated at 4% and 8% salt concentrations. It was observed that amongst the test subjects about 50% of the strains had a high resistance to salinity. Many of them could produce indole-3-acetic acid (IAA) IAA (in RS 13.9% and in RP 7.6%), exhibited ACC deaminase activity (55.8% in RS and 36.6% in RP), and could synthesize siderphores (62.7% in RS and 50% in RP). Correlation coefficient analyses were carried out for the three kinds of plant growth promoting abilities (PGPA) and salt tolerance. A positive correlation was found between an ability to synthesize siderphores and ACC deaminase activity (r=0.605, p<0.037). Similarly, positive correlations were noted between salt tolerance and ACC deaminase activity (r=0.762, p<0.004, r=0.771), and salt tolerance and an ability to synthesize siderphores (r=0.771, p<0.003).

Lead Tolerance Profile of Pseudomonas Stuzeri in Liquid Culture

  • Kim, Su-Jung;Jung, A-Young;Joo, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.332-336
    • /
    • 2007
  • Pseudomonas stutzeri strain KCCM 34719 was used in this experiment to determine the effects of increasing Pb(II) concentrations on its growth rate. To obtain optimum growth conditions, strain KCCM 34719 was cultivated in nutrient broth under various conditions, such as temperature, pH, and NaCl concentration. Optimal conditions for cell growth were $30^{\circ}C$ of temperature, 8.0 of pH, and 3% of NaCl concentration, respectively. Growth response of bacterial cell to Pb(II) showed tolerance to concentrations ranging from 10 to 100 mg ${\ell}^{-1}$ in liquid culture, following a growth pattern similar to the control. Growth rate was greatly inhibited at 200 mg ${\ell}^{-1}$ of Pb(II).

Comparison of the Effects of MK-801 and Dextromethorphan on Opioid Physical Dependence and Analgesic Tolerance (N-methyl-D-aspartate 수용체 길항제가 몰핀 신체의존성 및 진통내성에 미치는 영향)

  • 이선희;신대섭;유영아;김대병;이종권;김부영
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.63-68
    • /
    • 1995
  • N-methyl-D-aspartate(NMDA) receptor has been well known as an important mediator of several forms of neural and behavioral plasticity. But different results were reported about the effect of MK-801 or dextromethorphan on opioid dependence. The present studies examined whether NMDA receptor antagonists can alter the opioid dependence and tolerance in rodents. Naloxone precipitated withdrawal symptoms and changes of locomotor activities were observed in MK-801 or dextromethorphan pretreated morphine-dependent rats. Tail-flick assay was used for morphine analgesia and tolerance was found after 4 day's consecutive injections (10 mg/kg, s.c., twice/day) of morphine in mice. Locomotor activity was increased and the withdrawal symptoms were decreased by the pretreatment of MK-801 in morphine-dependent rats. But 0.3 mg/kg i.p. of MK-801 intensified the body weight loss and produced severe ataxia and rotation although some withdrawal signs were attenuated. Morphine induced analgesic tolerance was inhibited by the pretreatment of MK-801 and dextromethorphan. Dextromethorphan was more potent than MK-801 in inhibiting the development of the analgesic tolerance in mice. These results suggest that NMDA system may be involved in opioid withdrawal and analgesic tolerance but appropriate caution should be requested when MK-801 is used in combination with opioid because of untoward neurologic signs.

  • PDF

Improvement of Drought Tolerance in Transgenic Tobacco Plant (형질전환 담배의 내건성 개선)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.