• 제목/요약/키워드: Environmental physiology

검색결과 391건 처리시간 0.02초

Lack of Participation of the GSTM1 Polymorphism in Cervical Cancer Development in Northeast Thailand

  • Natphopsuk, Sitakan;Settheetham-Ishida, Wannapa;Settheetham, Dariwan;Ishida, Takafumi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1935-1937
    • /
    • 2015
  • The potential association between the GSTM1 deletion polymorphism and risk of cervical cancer was investigated in Northeastern Thailand. DNA was extracted from buffy coat specimens of 198 patients with squamous cell carcinoma of the cervix and 198 age-matched healthy controls. Genotyping of the GSTM1 was conducted by using two PCR methods, a short- and a long-PCR. Distribution of the GSTM1 genotypes in between the cases and the controls was not significantly different (p>0.5 by ${\chi}^2$ test). The results suggest that the GSTM1 deletion polymorphism is not a risk factor for squamous cell carcinoma of the cervix in the northeast Thai women.

뇌파 영역에서 수면 발생 과정 (Sleep Onset Period from the EEG Point of View)

  • 이현권;박두흠
    • 수면정신생리
    • /
    • 제16권1호
    • /
    • pp.16-21
    • /
    • 2009
  • In accordance with the development of EEG and polysomnography in the field of sleep research, the sleep onset period (SOP) between wakefulness and sleep has been considered an important part for understanding the physiology of sleep. SOP in the transition from wakefulness to sleep is a gradual process integrating various viewpoints such as behavior, EEG, physiology and subjective report. Particularly, based on understanding of EEG changes during sleep, SOP has been regarded as a pattern of topographical change in specific frequency and specific state in EEG. Studies on quantitative EEG (qEEG) and event-related potential (ERP) have suggested that SOP shows the changes of functional coordination at the specific cortical areas in qEEG and the changes of regular patterns in response to environmental stimulation in ERP. The development of sleep EEG and topographic mapping of EEG is expected to integrate various viewpoints of SOP and clarify the neurophysiologic mechanism of SOP further.

  • PDF

Mitochondrial Fission: Regulation and ER Connection

  • Lee, Hakjoo;Yoon, Yisang
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.89-94
    • /
    • 2014
  • Fission and fusion of mitochondrial tubules are the main processes determining mitochondrial shape and size in cells. As more evidence is found for the involvement of mitochondrial morphology in human pathology, it is important to elucidate the mechanisms of mitochondrial fission and fusion. Mitochondrial morphology is highly sensitive to changing environmental conditions, indicating the involvement of cellular signaling pathways. In addition, the well-established structural connection between the endoplasmic reticulum (ER) and mitochondria has recently been found to play a role in mitochondrial fission. This minireview describes the latest advancements in understanding the regulatory mechanisms controlling mitochondrial morphology, as well as the ER-mediated structural maintenance of mitochondria, with a specific emphasis on mitochondrial fission.

Physiological and Genetical Characters for Early Maturity in Barley and Common Wheat

  • Yasuda, Shozo
    • 한국작물학회지
    • /
    • 제35권6호
    • /
    • pp.548-558
    • /
    • 1990
  • Physiology and genetics of early maturity in cereals are the subject of practical as well as scientific interest for agronomist and plant breeders, Thorough understanding of the true nature of such a complex character requires physiological and genetical knowledge about the internal factors, which are closely bound up with and react to some particular external or environmental factors. From the practical point of view. experiments should be conducted under controlled conditions. especially the day length and temperature, so that the genotypic differences pertaining to these factors may be discerned. Takahashi and Yasuda (1958, 1970) maintained that at least three physiological factors were responsible for determining earliness in barley. namely. (1) spring and winter habit of growth or vernalization requirement, (2) ogitioeruiduc response or sensitivity to short-day, and (3) earliness factor in a narrow sense or minimal vegetative growth. The same situations were true in common wheat also (Yasuda and Shimoyama, 1965), In this report. physiology and genetics of internal factors and their relations to the time of heading in the field will be presented with some problems concerning differences in mechanism of early maturity between barley and wheat.

  • PDF

Effect of Carboplatin in Combination with Hyperthermia on Cell Death in Human Retinoblastoma Cell Lines

  • Park, H.J.;Park, S.R.;Park, E.K.;Chung, H.S.;H.E.Ahn;Y.H.Rhee;Ha, S.W.;Lim, B.U.
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.60-60
    • /
    • 2001
  • We have investigated the effect of environmental acidity on the induction of apoptosis caused by heat and carboplatin alone or combined. The degree of apoptosis after heating at 42.5$^{\circ}C$ for 1h in pH 6.6 medium was greater than that in pH 7.5 medium in WERI human retinobalstoma cells. When heated in the same pH medium, more apoptosis occurred in the WERI cells than in the Y79 human retinoblastoma cells.(omitted)

  • PDF

The Emergence of Behavioral Testing of Fishes to Measure Toxicological Effects

  • Brooks, Janie S.
    • Toxicological Research
    • /
    • 제25권1호
    • /
    • pp.9-15
    • /
    • 2009
  • Historically, research in toxicology has utilized non-human mammalian species, particularly rats and mice, to study in vivo the effects of toxic exposure on physiology and behavior. However, ethical considerations and the overwhelming increase in the number of chemicals to be screened has led to a shift away from in vivo work. The decline in in vivo experimentation has been accompanied by an increase in alternative methods for detecting and predicting detrimental effects: in vitro experimentation and in silico modeling. Yet, these new methodologies can not replace the need for in vivo work on animal physiology and behavior. The development of new, non-mammalian model systems shows great promise in restoring our ability to use behavioral endpoints in toxicological testing. Of these systems, the zebrafish, Danio rerio, is the model organism for which we are accumulating enough knowledge in vivo, in vitro, and in silico to enable us to develop a comprehensive, high-throughput toxicology screening system.

Roads to Construct and Re-build Plant Microbiota Community

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.425-431
    • /
    • 2022
  • Plant microbiota has influenced plant growth and physiology significantly. Plant and plant-associated microbes have flexible interactions that respond to changes in environmental conditions. These interactions can be adjusted to suit the requirements of the microbial community or the host physiology. In addition, it can be modified to suit microbiota structure or fixed by the host condition. However, no technology is realized yet to control mechanically manipulated plant microbiota structure. Here, we review step-by-step plant-associated microbial partnership from plant growth-promoting rhizobacteria to the microbiota structural modulation. Glutamic acid enriched the population of Streptomyces, a specific taxon in anthosphere microbiota community. Additionally, the population density of the microbes in the rhizosphere was also a positive response to glutamic acid treatment. Although many types of research are conducted on the structural revealing of plant microbiota, these concepts need to be further understood as to how the plant microbiota clusters are controlled or modulated at the community level. This review suggests that the intrinsic level of glutamic acid in planta is associated with the microbiota composition that the external supply of the biostimulant can modulate.

Effects of Microgravity on Human Physiology

  • Nguyen, Nguyen;Kim, Gyutae;Kim, Kyu-Sung
    • 항공우주의학회지
    • /
    • 제30권1호
    • /
    • pp.25-29
    • /
    • 2020
  • Space exploration is one of the dreams of humankind. However, the intriguing environment was a challenge for the human body, where we must counter with many extreme conditions such as thermal support, radiation, microgravity. Life, as well as the human body, developed and evolved in the continuous presence of gravity, especially when living creatures transfer from the ocean to the land. Once this gravitational force doesn't impact on the body, the drastic changes occur. Some of these changes were observed immediately, while others progress only slowly. Since the first orbital flight was performed, several hazards for the organs of the human body were identified [1]. These changes in human physiology can reverse when astronauts return to Earth. This article will review the published findings of the effects of microgravity exposure on the human body.

감송향물추출물의 HO-1 발현 촉진을 통한 세포보호 작용 및 항염작용 (Cytoprotective and Anti-inflammatory Effects of Nardostachys jatamansi Water Extract Via Expression of HO-1)

  • 박철;정민;서은아;권강범;유도곤
    • 동의생리병리학회지
    • /
    • 제24권4호
    • /
    • pp.624-629
    • /
    • 2010
  • Nardostachys jatamansi water extract (NJ) has long been used for the treatment of inflammation-and immune-mediated disorders in the oriental countries. However, its site of action and pharmacological mechanism are not fully investigated. In this study, the authors tried to explore the cytoprotective and anti-inflammatory actions of NJ. First of all, NJ has no harmful effects on viability of neuronal cell line HT22 cells in the dose range of 300 mg/ml. On the contrary, it shows cytoprotective effects on the cells treated with reactive oxygen species H2O2. Probably the cytoprotective effects of NJ might be caused by its ability to induce well known cytoprotective gene hem oxygenase-1 (HO-1). Furthermore, NJ shows inhibitory effects on the expression of inducible nitric oxide synthase (iNOS) and NO production which are known to destroy the integrity of both cells and tissues. It also inhibits potent proinflammatory cytokine tumor necrosis factor-alpha (TNF-a) production. The blocking effects of NJ on cytopathic and proinflammatory actions of LPS might be caused by the induction of cytoprotective and anti-inflammatory genes HO-1 in macrophages cell line RAW 264.7 cells. The results in this study suggest NJ could be used for the amelioration of inflammation which is underlying mechanism responsible for most chronic diseases.

Effects of 3,3',4,4',5-pentachlorobiphenyl on human Kv1.3 and Kv1.5 channels

  • Kim, Jong-Hui;Hwang, Soobeen;Park, Seo-in;Jo, Su-Hyun
    • International Journal of Oral Biology
    • /
    • 제44권3호
    • /
    • pp.115-123
    • /
    • 2019
  • Among the environmental chemicals that may be able to disrupt the endocrine systems of animals and humans are polychlorinated biphenyls (PCBs), a chemical class of considerable concern. PCB consists of two six-carbon rings linked by a single carbon bond, and theoretically, 209 congeners can form, depending on the number of chlorines and their location on the biphenyl rings. Furthermore, 3,3',4,4',5-pentachlorobiphenyl (PCB126) exposure also increases nitric oxide production and nuclear factor kappa-light-chain-enhancer of activated B cells binding activity in chondrocytes, thus contributing as an initiator of chondrocyte apoptosis and resulting in thymic atrophy and immunosuppression. This study identified whether cardiac and immune abnormalities from PCB126 were caused by the Kv1.3 and Kv1.5 channels. PCB126 did not affect either the steady-state current or peak current of the Kv1.3 and Kv1.5 channels. However, PCB126 right-shifted the steady-state activation curves of human Kv1.3 channels. These results suggest that PCBs can affect the heart in a way that does not block voltage-dependent potassium channels including Kv1.3 and Kv1.5 directly.