• Title/Summary/Keyword: Environmental physiology

Search Result 389, Processing Time 0.023 seconds

Physiological Responses of Bupleurum latissimum Nakai, Endangered Plants to Changes in Light Environment (광환경조절에 따른 멸종위기식물 섬시호의 생리적 반응)

  • Lee, Kyeong-Cheol;Wang, Myeong-Hyeon;Song, Jae Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2013
  • This study was conducted to investigate the physiological responses of Bupleurum latissimum, endangered plants by light condition. We investigated photosynthetic parameters, chlorophyll contents and chlorophyll fluorescence under different shading treatments (Shaded 50%, 70%, 90% and non-treated). Results showed that net apparent quantum yield (AQY) and chlorophyll contents were significantly increased with elevating shading level. However, light compensation point (LCP) and dark respiration ($R_d$) were shown the opposite trend. Especially, non-treated exhibited photoinhibition such as reduction of chlorophyll contents and maximum photosynthesis rate ($Pn_{max}$) also variation trend of stomatal conductance ($g_s$), and transpiration rate (E) were decreased to prevent water loss. Photosynthetic rate ($P_{Nmax}$) and photochemical efficiency (Fv/Fm) of 90% treatment showed a drastic reduction in July. This implies that photosynthetic activity will be sharply decreased with a long period of low light intensity. The 50% treatment showed relatively higher photosynthetic activity than other treated. This result suggested that growth and physiology of B. latissimum adapted to 50% of full sunlight.

Recent research trends of post-harvest technology for king oyster mushroom (Pleurotus eryngii) (큰느타리버섯 수확후 관리기술 최근 연구 동향)

  • Choi, Ji-Weon;Yoon, YoeJin;Lee, Ji-Hyun;Kim, Chang-Kug;Hong, Yoon-Pyo;Shin, Il Sheob
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.131-139
    • /
    • 2018
  • The king oyster mushroom (Pleurotus eryngii) is widely consumed because of its flavor, texture, and its functional properties such as antioxidant activity and prebiotic effects. However, long-term product storage and transportation (e.g., export) are difficult because of its limited durability. The shelf-life of king oyster mushroom is affected by environmental factors such as temperature, humidity, gas composition, and ventilation, which may affect sensory characteristics including respiration rate, texture, moisture, flavor, color, and pH. The major problems regarding storage of mushrooms are browning, flavor changes, and softening. To address these problems, novel preservation techniques were developed, and more durable variants were bred. Different drying methods, gamma irradiation, chitosan coating, modified atmosphere (MA) packaging, and controlled atmosphere (CA) storage were evaluated in order to extend the shelf-life of king oyster mushrooms. Freeze drying showed better results for the preservation of mushrooms than other drying methods. Irradiation with 1 kGy was more effective for extending mushroom shelf-life than higher doses. The preservative performance of chitosan-based films was improved by combining the compound with other hydrocolloids, such as oil, protocatechuic acid, and wax. The CA storage conditions recommended for king oyster mushrooms are 5kPa $O_2$ and 10 to 15kPa $CO_2$ at temperatures below $10^{\circ}C$. Active MA packaging with microperforated PP film was also effective for maintaining quality during storage.

Effects of Outdoor Housing of Piglets on Behavior, Stress Reaction and Meat Characteristics

  • Yonezawa, Tomohiro;Takahashi, Asahi;Imai, Satomi;Okitsu, Aya;Komiyama, Sonomi;Irimajiri, Mami;Matsuura, Akihiro;Yamazaki, Atusi;Hodate, Koich
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.886-894
    • /
    • 2012
  • Well-designed housing systems are important from the viewpoint of animal welfare and improvement of meat production. In this study, we investigated the effects of outdoor housing of pigs on their behavior, cortisol levels, and meat characteristics. Two groups that were born and raised in a spacious outdoor pen ($4{\times}10$ m for every two sows) or a minimum-sized standard pen in a piggery ($1.9{\times}2.2$ m for every sow) were studied. When their behaviors at the age of 2 to 3 wk were observed, the number of rooting episodes tended to be larger (p = 0.0509) and the total time of rooting tended to be longer (p = 0.0640) in the outdoor-housed piglets although the difference was not significant. Basal salivary cortisol levels of the outdoor piglets at the age of 4 wk were significantly lower than those of the indoor piglets ($5.0{\pm}0.59$ ng/ml vs. $11.6{\pm}0.91$ ng/ml, 30 min after treatment), although their plasma cortisol levels were similar ($53.3{\pm}3.54$ ng/ml vs. $59.9{\pm}4.84$ ng/ml, 30 min after treatment). When the ears were pierced at weaning, plasma and salivary cortisol levels were increased in both groups, even at 15 min after piercing. However, the increase in the outdoor-housed group was significantly less than that in the indoor-housed group. Throughout their lives, body weight and daily gain of the pigs were not significantly different between the two groups. In a meat taste preference test taken by 20 panelists, saltiness, flavor, and color of the outdoor-housed pork were found to be more acceptable. Moreover, when an electronic taste-sensing device was utilized, the C00 and CPA-C00 outputs ($3.78{\pm}0.07$ and $-0.20{\pm}0.023$), which correspond to compounds of bitterness and smells, respectively, were significantly lower in the outdoor-housed pork ($5.03{\pm}0.16$ and $-0.13{\pm}0.009$). Our results demonstrate that the outdoor housing system for piglets induces natural behaviors such as rooting and suppresses the strongest stress reaction of piglets, which could be important for animal welfare. Moreover, the outdoor housing system might change muscle characteristics and improve pork bitterness, flavor, and color. These changes may be preferred by consumers, increasing the sale of these meats.

The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4

  • Lee, Su Jung;Noh, Kyung Tae;Kang, Tae Heung;Han, Hee Dong;Shin, Sung Jae;Soh, Byoung Yul;Park, Jung Hee;Shin, Yong Kyoo;Kim, Han Wool;Yun, Cheol-Heui;Park, Won Sun;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • In this study, we show that Mycobacterium avium subsp. paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-${\alpha}$, and IL-$1{\beta}$) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naive T cells to polarized $CD4^+$ and $CD8^+$ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of $CD4^+$ and $CD8^+$ T cells.

Changes of Root Physiology of Tissue Cultured M.9 Apple Rootstock after Layering (기내 배양 사과 대목 M.9의 순화 후 휘묻이 번식 시 발근 관련 생리적 특성 변화)

  • Kwon Soon-Il;Kim Mok-Jong;Kang In-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.181-186
    • /
    • 2005
  • This work was conducted to evaluate the effects of rooting on tissue cultured M.9 (Malus domestica Bork. cv, tcM.9) after layering in field. We investigated an appearance period of first root in shoot, rooting ratio, contents of indole-3-acetic acid (IAA), abscisic acid (ABA), inorganic matters, sugars, and lignin in rooting areas of stems by layering. First root in shoot of tcM.9 and natural M.9 appeared 25 and 30 days after layering (DAL), respectively. Rooting ratio was much higher in tcM.9 than in natural M.9. The content of IAA was higher in tcM.9 than in natural M.9 before layering, but it was reversed at 20 and 30 DAL. In contrast, the content of ABA was much higher in natural M.9 than in tcM.9 in case of both before and 10 and 20 DAL. The contents of N, B, Mn, and Zn were significantly higher in tcM.9 than in natural M.9 both before and 10 and 20 DAL. The contents of sugars in tcM.9 had the similar pattern of the contents of inorganic materials. There were statistically significant differences in the contents of sucrose and glucose at 30 DAL as well as the content of maltose at 20 and 30 DAL. The content of lignin was significantly higher in tcM.9 than in natural M.9 before layering and 10 and 30 DAL while there was no difference 20 DAL. Therefore, improvement of rooting ability in the tissue cultured root stock M.9 might be due to the changes of inorganic matters or lignin rather than that of sugars and hormones.

Rhythmic Control and Physiological Functional Significance of Melatonin Production in Circadian Rhythm (주기적 리듬 조절에 의한 멜라토닌 생산과 생리적 기능의 중요성)

  • Kim, Min Gyun;Park, Seul Ki;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1064-1072
    • /
    • 2013
  • Circadian rhythm is controlled by hormonal oscillations governing the physiology of all living organisms. In mammals, the main function of the pineal gland is to transform the circadian rhythm generated in the hypothalamic suprachiasmatic nucleus into rhythmic signals of circulating melatonin characterized by a largely nocturnal increase that closely reflects the duration of night time. The pineal gland has lost direct photosensitivity, but responds to light via multi-synaptic pathways that include a subset of retinal ganglion cells. Rhythmic control is achieved through a tight coupling between environmental lighting and arylalkylamine-N-acetyltransferase (AANAT) expression, which is the rhythm-controlling enzyme in melatonin synthesis. Previous studies on the nocturnal expression of AANAT protein have described transcriptional, post-transcriptional, and post-translational regulatory mechanisms. Molecular mechanisms for dependent AANAT expression provide novel aspects for melatonin's circadian rhythmicity. Extensive animal research has linked pineal melatonin for the expression of seasonal rhythmicity in many mammalian species to the modulation of circadian rhythms and to sleep regulation. It has value in treating various circadian rhythm disorders, such as jet lag or shift-work sleep disorders. Melatonin, also, in a broad range of effects with a significant regulation influences many of the body's physiological functions. In addition, this hormone is known to influence reproductive, cardiovascular, and immunological regulation as well as psychiatric disorders.

Physiology and Growth of Transgenic Tobacco Plants Containing Bacillus subtilis Protoporphyrinogen Oxidase Gene in Response to Oxyfluorfen Treatment (Bacillus subtilis Protoporphyrinogen Oxidase 유전자 형질전환 담배의 Oxyfluorfen 처리에 대한 생리 · 생장반응)

  • Lee, J.J.;Kuk, Y.I.;Chung, J.S.;Lee, S.B.;Choi, K.W.;Han, O.S.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.237-245
    • /
    • 1998
  • The transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants containing Bacillus subtilis protoporphyrinogen oxidase gene with cauliflower mosaic virus 35S promoter have recently been generated by using Agrobacterium-mediated gene transformation. The nontransgenic and the transgenic tobacco plants were compared with respect to responses to diphenyl ether herbicide oxyfluorfen and under various environmental conditions. Both cellular leakage and lipid peroxidation caused by oxyfluorfen were found to be less in the transgenic than in the nontransgenic plants. Growth responses of the transgenic plants under various temperature, light, and water conditions were almost the same as those of the nontransgenic plants, although the transgenic plants exhibited slightly more retarded growth under low light or saturated water condition. These results revealed that the transgenic tobacco plants containing B. subtilis protoporphyrinogen oxidase gene under cauliflower mosaic virus 35S promoter were relatively resistant to oxyfluorfen and exhibited normal growth pattern. Possible mechanism of resistance to oxyfluorfen in the transgenic plants is also discussed.

  • PDF

Seasonal Changes in Physiology of the abalone Haliotis discus hannai reared from Nohwa Island on the South Coast of Korea (북방전복 Haliotis discus hannai의 계절별 생리적 변화)

  • Shin, Yun Kyung;Lee, Won Chan;Kim, Dong Wook;Son, Myung Hyun;Kim, Eung Oh;Jun, Je Cheon;Kim, Seong Hee
    • The Korean Journal of Malacology
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • Growth, oxygen consumption, ammonia excretion, feeding and assimilation rate were examined from May 2010 to February 2011 in order to assess the physiological changes of Haliotis discus hannai in accordance with changes in season. The water temperature was in the range of $8-23.2^{\circ}C$ and the salinity in the range of 31.9-34.1psu during the examination period. The length of shell of Haliotis discus hannai grew from 36.3 mm to 66.1 mm in the 1 year old entities and from 60.6 mm to 66.1 mm for the 2 year old entities, while the weight of the meat increased from 3.16 g to 12.04 g and from 15.8 g to 21.5 g, respectively. The oxygen consumption and ammonia excretion rate displayed trend of increase in accordance with the increase in water temperature, while the feeding rate was high during the period from July to October. The assimilation rate was in the range of 68%-71% without significant difference between the age of the entities and seasons. SFG displayed +value throughout the year for the 1 year old entities of Haliotis discus hannai as well as for the 2 year old entities with the exception of the period of July, thereby showing that they are growing throughout the year. Therefore, there was no environmental effect including water temperature and salinity during the examination period.

Resveratrol Induces Glioma Cell Apoptosis through Activation of Tristetraprolin

  • Ryu, Jinhyun;Yoon, Nal Ae;Seong, Hyemin;Jeong, Joo Yeon;Kang, Seokmin;Park, Nammi;Choi, Jungil;Lee, Dong Hoon;Roh, Gu Seob;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Park, Jae-Yong;Park, Jeong Woo;Kang, Sang Soo
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.991-997
    • /
    • 2015
  • Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of ARE-scontaining mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4'-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetraprolin (TTP). Res increased TTP expression in U87MG human glioma cells. Res-induced TTP destabilized the urokinase plasminogen activator and urokinase plasminogen activator receptor mRNAs by binding to the ARE regions containing the 3' untranslated regions of their mRNAs. Furthermore, TTP induced by Res suppressed cell growth and induced apoptosis in the human glioma cells. Because of its regulation of TTP expression, these findings suggest that the bioactive dietary compound Res can be used as a novel anti-cancer agent for the treatment of human malignant gliomas.

Tristetraprolin Inhibits the Growth of Human Glioma Cells through Downregulation of Urokinase Plasminogen Activator/Urokinase Plasminogen Activator Receptor mRNAs

  • Ryu, Jinhyun;Yoon, Nal Ae;Lee, Yeon Kyung;Jeong, Joo Yeon;Kang, Seokmin;Seong, Hyemin;Choi, Jungil;Park, Nammi;Kim, Nayoung;Cho, Wha Ja;Paek, Sun Ha;Cho, Gyeong Jae;Choi, Wan Sung;Park, Jae-Yong;Park, Jeong Woo;Kang, Sang Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.156-162
    • /
    • 2015
  • Urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) play a major role in the infiltrative growth of glioblastoma. Downregulatoion of the uPA and uPAR has been reported to inhibit the growth glioblastoma. Here, we demonstrate that tristetraprolin (TTP) inhibits the growth of U87MG human glioma cells through downregulation of uPA and uPAR. Our results show that expression level of TTP is inversely correlated with those of uPA and uPAR in human glioma cells and tissues. TTP binds to the AU-rich elements within the 3' untranslated regions of uPA and uPAR and overexpression of TTP decreased the expression of uPA and uPAR through enhancing the degradation of their mRNAs. In addition, overexpression of TTP inhibited the growth and invasion of U87MG cells. Our findings implicate that TTP can be used as a promising therapeutic target to treat human glioma.