• Title/Summary/Keyword: Environmental loads

Search Result 1,516, Processing Time 0.023 seconds

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Asphalt Concrete Pavement Response to Moving Load and Viscoelastic Property (아스팔트 혼합물의 점탄성과 차량의 이동 속도가 포장 거동에 미치는 영향)

  • Jo, Myoung-hwan;Kim, Nakseok;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.485-492
    • /
    • 2008
  • This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. A series of field tests have been conducted on three pavement sections (A2, A5, and A8) at the Korea Expressway Corporation (KEC) test road. The effect of vehicle speed on the responses of each test section was investigated at three speeds: 25 km/hr, 50 km/hr, and 80 km/hr. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of finite element (FE) analyses. A commercial FE package, ABAQUS was used to model each test section and a step loading approximation has been adopted to simulate the effect a moving vehicle. For viscoelastic analysis, relaxation moduli of asphalt mixtures were obtained from laboratory test. Field responses reveals the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains) and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck of Railway Bridges Considering the Temperature Change (철도교용 프리케스트 바닥판의 온도변화를 고려한 적정한 종방향 프리스트레스 수준의 산정)

  • Jeon, Se Jin;Kim, Young Jin;Kim, Seong Woon;Kim, Cheol Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.499-509
    • /
    • 2006
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail, acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses for the frequently adopted PSC composite girder railway bridge. The effect of the temperature change is also investigated considering the design codes and theoretical equations in an in-depth manner. The estimated proper prestress level to counteract those tensile stresses is above 2.4 MPa, which is similar to the case of the highway bridges.

Comparisons on the Interface Shear Strength of Geosynthetics Evaluated by Using Various Kinds of Testing Methods (다양한 시험법에 의해 산정된 토목섬유 사이의 접촉면 전단강도 비교)

  • Seo, Min-Woo;Oh, Myoung-Hak;Yoon, Hyun-Suk;Park, Jun-Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.73-80
    • /
    • 2006
  • The shear behavior of four different interfaces consisting of four types of geosynthetics was investigated, and both static and dynamic test for the geosynthetic interfaces were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board test was compared with calculated values from large direct shear tests. The comparison results indicated that direct shear tests show high possibility to over-predict the shear strength in the low normal stress range where direct shear tests are not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table test, it was found that the friction angle might be different depending on the test method and normal stresses applied in the research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field with using the geosynthetic materials installed in the site.

An Improved Reliability-Based Design Optimization using Moving Least Squares Approximation (이동최소자승근사법을 이용한 개선된 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.45-52
    • /
    • 2009
  • In conventional structural design, deterministic optimization which satisfies codified constraints is performed to ensure safety and maximize economical efficiency. However, uncertainties are inevitable due to the stochastic nature of structural materials and applied loads. Thus, deterministic optimization without considering these uncertainties could lead to unreliable design. Recently, there has been much research in reliability-based design optimization (RBDO) taking into consideration both the reliability and optimization. RBDO involves the evaluation of probabilistic constraint that can be estimated using the RIA (Reliability Index Approach) and the PMA(Performance Measure Approach). It is generally known that PMA is more stable and efficient than RIA. Despite the significant advancement in PMA, RBDO still requires large computation time for large-scale applications. In this paper, A new reliability-based design optimization (RBDO) method is presented to achieve the more stable and efficient algorithm. The idea of the new method is to integrate a response surface method (RSM) with PMA. For the approximation of a limit state equation, the moving least squares (MLS) method is used. Through a mathematical example and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Prediction of Ultimate Load of Drilled Shafts Embedded in Weathered Rock by Extrapolation Method (외삽법을 이용한 풍화암에 근입된 현장타설말뚝의 극한하중 예측)

  • Jung, Sung Jun;Lee, Sang In;Jeon, Jong Woo;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.145-151
    • /
    • 2009
  • In general, a drilled shaft embedded in weathered rock has a large load bearing capacity. Therefore, most of the load tests are performed only up to the load level that confirms the pile design load capacity, and stopped much before the ultimate load of the pile is attained. If a reliable ultimate load value can be extracted from the premature load test data, it will be possible to greatly improve economic efficiency as well as pile design quality. The main purpose of this study is to propose a method for judging the reliability of the ultimate load of piles that is obtained from extrapolated load test data. To this aim, ten static load test data of load-displacement curves were obtained from testing of piles to their failures from 3 different field sites. For each load-displacement curve, loading was assumed as 25%, 50%, 60%, 70%, 80%, and 90% of the actual pile bearing capacity. The limited known data were then extrapolated using the hyperbolic function, and the ultimate capacity was re-determined for each extrapolated data by the Davisson method (1972). Statistical analysis was performed on the reliability of the re-evaluated ultimate loads. The results showed that if the ratio of the maximum-available displacement to the predicted displacement exceeds 0.6, the extrapolated ultimate load may be regarded as reliable, having less than a conservative 20% error on average. The applicability of the proposed method of judgment was also verified with static load test data of driven piles.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Nonlinear Analysis of Steel-concrete Composite Girder Using Interface Element (경계면 요소를 사용한 강·콘크리트 혼합 거더의 비선형 거동 해석)

  • Kwon, Hee-Jung;Kim, Moon Kyum;Cho, Kyung Hwan;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.281-290
    • /
    • 2009
  • In this study, an analysis technique of hybrid girder considering nonlinearity of steel-concrete contact surface is presented. Steel-concrete hybrid girder shows partial-interaction behavior due to the deformation of shear connectors, slip and detachment at the interface, and cracks under the applied loads. Therefore, the partial-interaction approach becomes more reasonable. Contact surface is modeled by interface element and analyzed nonlinearly because of cost of time and effort to detailed model and analysis. Steel and Concrete are modeled considering non-linearity of materials. Material property of contact surface is obtained from push-out test and input to interface element. For the constitutive models, Drucker-Prager and smeared cracking model are used for concrete in compression and tension, respectively, and a von-Mises model is used for steel. This analysis technique is verified by comparing it with test results. Using verified analysis technique, various analyses are performed with different parameters such as nonlinear material property of interface element and prestress. The results are compared with linear analysis result and analysis result with the assumption of full-interaction.

Investigating the Influence of Rate Dependency and Axial Force on the Seismic Performance Evaluation of Isolation Bearing (면진받침의 내진성능평가를 위한 실험 시 속도의존성과 수직하중의 영향)

  • Minseok Park;Yunbyeong Chae;Chul-Young Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.22-29
    • /
    • 2023
  • In the evaluation of seismic performance for structural materials and components, the loading rate and axial force can have a significant impact. Due to time-delay effects between input and output displacements, It is difficult to apply high-rate displacement in cyclic tests and hybrid simulations. Additionally, the difficulty of maintaining a consistent vertical load in the presence of lateral displacement has limited fast and real-time tests performed while maintaining a constant vertical load. In this study, slow, fast cyclic tests and real-time hybrid simulations were conducted to investigate the rate dependency and the influence of vertical loads of Isolation Bearing. In the experiment, the FLB System including an Adaptive Time Series (ATS) compensation and a state estimator was constructed for real-time control of displacement and vertical load. It was found that the vertical load from the superstructure and loading rate can have a significant impact on the strength of the seismic isolation bearing and its behavior during an earthquake. When conducting experiments for seismic performance evaluation, they must be implemented to be similar to reality. This study demonstrates the excellent performance of the system built and used for seismic performance evaluation and enables accurate and efficient seismic performance evaluation.