• Title/Summary/Keyword: Environmental impacts

Search Result 1,732, Processing Time 0.024 seconds

Physical Properties of Surface Sediments of the KR(Korea Reserved) 1, 2, and 5 Areas, Northeastern Equatorial Pacific (북동태평양 대한민국 광구 KR1, 2, 5 지역 표층 퇴적물의 물리적 특성 비교)

  • Lee, Hyun-Bok;Chi, Sang-Bum;Park, Cheong-Kee;Kim, Ki-Hyune;Ju, Se-Jong;Oh, Jae-Kyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.168-177
    • /
    • 2008
  • Trafficablility of a miner and potential environmental impacts due to mining activities should be considered in the selection of a commercial manganese nodule mining site. These two factors can be evaluated comparatively with physical properties and shear strength of sea-bed sediments. For the qualitative comparison of potential minig sites in terms of these two factors, physical properties such as water contents, void ratios, porosities, and grain densities, and shear strengths of surface sediments were determined for the three potential manganese nodule mining sites(KR1, KR2, and KR5) in the Korean manganese nodule contract area, northeast Pacific. For the study, sediment samples were collected from 107 stations from 2004 to 2006. The physical properties of surface sediments showed more significant differences between northern(KR1, KR2) and southern(KR5) blocks than between northern blocks(KR1 vs. KR2). Water content, void ratio, and porosity of sediments from KR5 were relatively higher than those from KR1 and KR2. Grain density of sediments from KR5 was relatively lower than those from KR1 and KR2. Shear strengths of the top 10cm sediments were higher in KR1 and KR2, whereas those of the deeper part were highest in KR5 block. Generally, sediments of high water contents are less suspendible than those of the low water contents by benthic disturbances, thus less disturbance is expected in the sediments of high water content by mining activities. In terms of trafficability, the shear strength of sediment below 10 cm deep is more important than shallower part because miner will disturb at least top 10 cm interval of the surface sediments. Base on these results, we conclude that KR5 area will be the best site for commercial mining among three investigated sites in this study.

A study on Perception and Response Strategy of Korean Ship Owners on Global Sulphur Cap 2020 (황산화물(SOx) 배출 저감 규제에 대한 국적선사의 인식과 대응 전략에 관한 연구)

  • Lee, Choong-Ho;Kim, Hyun-Jung;Park, keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.4
    • /
    • pp.141-160
    • /
    • 2018
  • In this paper, to analyze the perception and response strategy of Korean ship owners on Global Sulphur Cap 2020, examined the IMO environmental regulation status focusing on MARPOL Annex VI regulation about air pollution prevention, technological measures to reduce SOx emission, shipping industry and management status of Korean ship owners. First of all, the questionnaire was conducted for Korean ship owners after selecting the evaluation factors. The purpose of this study was to investigate the difference of the perception and response strategy of Korean ship owners by corporation size and main vessel type using frequency and cross analysis. It is confirmed that various researches on SOx emission reduction have been carried out from various points of view at home and abroad. In this study, existing studies related to technical factors for regulatory response and economics analysis were examined and evaluation factors were selected. As a result of analysis, it is found that large-sized shipping companies are more prepared for regulatory response than small and medium-sized bulk carrier owners. There were similar perception and the direction of response strategy about the impacts by corporation size and main vessel type. In about two years to be implemented in 2020, It is necessary to find an appropriate response strategy based on the support policy of the government and related organizations and the systematic analysis of the ship owners. Through this study, although the difference between the perception and response strategy of the ship owners by corporation size and main vessel type was understood, it was found that there were limitations on specific response strategy and corporate data collection. In future research, we should overcome the limitations of this study and conduct an in-depth study.

Response of Soil Properties to Land Application of Pig Manure Liquid Fertilizer in a Rice Paddy (돈분뇨 액비가 시용된 논토양 특성 변화)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Kang, Seong-Soo;Han, Min-Soo;Jung, Goo-Bok;Kang, Kee-Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.4
    • /
    • pp.97-105
    • /
    • 2011
  • A wide diversity of liquid fertilizers and composts produced from the livestock manure in Korea is commonly applied to agricultural lands as an alternative of chemical fertilizers. However, their effects on the crop production and environmental impacts are still vague. The current study was investigated the property changes of paddy soils in sandy loam and silty loam treated with 1) control (no treatment), 2) chemicals, 3) storage liquid fertilizer and 4) SCB liquid fertilizer located in Gyeong-gi province, Korea. The chemical properties of soils in sandy loam and silty loam before the treatment were similar with the ones in the average paddy fields in Korea. Contrary to this, the amount of available phosphorus in sandy loam was higher than the one in the average paddy fields. The number of living organisms in sandy loam and silty loam treated with storage liquid fertilizer and SCB liquid fertilizer were higher than the ones in sandy loam and silty loam with no-treatment and chemicals. Significant difference (P<0.05) among the treatments and no-treatment was observed in sandy loam rather than in silty loam. The amounts of heavy metals were the highest in both sandy loam and silty loam treated with storage liquid fertilizer and SCB liquid fertilizer. The comparison of heavy metals showed that the ones in silty loam were little bit higher than sandy loam. The leaf lengths and dry weights of rices were increased over time, however, no significant difference was observed among each treament. In addition, the rice yield in sandy loam treated with SCB liquid fertilizer was higher than the ones in sandy loam. The highest rice yield was obtained from sandy loam treated with chemicals, but there was no significant difference between storage liquid fertilizer and SCB liquid fertilizer. While the rate of nutrient absorption by rices was the highest in sandy loam and silty loam treated with chemicals, there was no significant difference in sandy loam and silty loam treated with livestock liquid manure.

Assessment of Productivity and Vulnerability of Climate Impacts of Forage Corn (Kwangpyeongok) Due to Climate Change in Central Korea (국내 중부지역에 있어서 기후변화에 따른 사료용 옥수수의 생산성 및 기후영향취약성 평가)

  • Chung, Sang Uk;Sung, Si Heung;Zhang, Qi-Man;Jung, Jeong Sung;Oh, Mirae;Yun, Yeong Sik;Seong, Hye Jin;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.105-113
    • /
    • 2019
  • A two-year study was conducted from 2017 to 2018 by the establishment of a test field at Chungju-si and Cheongyang-gun. Plant height, number of leaves, insects and diseases, and fresh and dry matter yields for corn hybrid('Kwangpyeongok') were investigated. Daily average, maximum, and minimum temperature, monthly average temperature, daily precipitation, and sunshine duration during the growing season were investigated. We selected climate-critical factors to corn productivity and conducted an evaluation of vulnerability to climate change from 1999 to 2018 for both regions. In 2018, the dry matter yield of forage corn was 6,475 and 7,511 kg/ha in Chungju and Cheongyang, respectively, which was half of that in 2017. The high temperature and drought phenomenon in the 2018 summer caused the corn yield to be low. As well as temperature, precipitation is an important climatic factor in corn production. As a result of climate impact vulnerability assessment, the vulnerability has increased recently compared to the past. It is anticipated that if the high temperature phenomenon and drought caused by climate change continues, a damage in corn production will occur.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Reliability Analysis on Stability of Armor Units for Foundation Mound of Composite Breakwaters (혼성제 기초 마운드의 피복재 안정성에 대한 신뢰성 해석)

  • Cheol-Eung Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.23-32
    • /
    • 2023
  • Probabilistic and deterministic analyses are implemented for the armor units of rubble foundation mound of composite breakwaters which is needed to protect the upright section against the scour of foundation mounds. By a little modification and incorporation of the previous empirical formulas that has commonly been applied to design the armor units of foundation mound, a new type formula of stability number has been suggested which is capable of taking into account slopes of foundation mounds, damage ratios of armor units, and incident wave numbers. The new proposed formula becomes mathematically identical with the previous empirical formula under the same conditions used in the developing process. Deterministic design have first been carried out to evaluate the minimum weights of armor units for several conditions associated with a typical section of composite breakwater. When the slopes of foundation mound become steepening and the incident wave numbers are increasing, the bigger armor units more than those from the previous empirical formula should be required. The opposite trends however are shown if the damage ratios is much more allowed. Meanwhile, the reliability analysis, which is one of probabilistic models, has been performed in order to quantitatively verify how the armor unit resulted from the deterministic design is stable. It has been confirmed that 1.2% of annual encounter probability of failure has been evaluated under the condition of 1% damage ratio of armor units for the design wave of 50 years return period. By additionally calculating the influence factors of the related random variables on the failure probability due to those uncertainties, it has been found that Hudson's stability coefficient, significant wave height, and water depth above foundation mound have sequentially been given the impacts on failure regardless of the incident wave angles. Finally, sensitivity analysis has been interpreted with respect to the variations of random variables which are implicitly involved in the formula of stability number for armor units of foundation mound. Then, the probability of failure have been rapidly decreased as the water depth above foundation mound are deepening. However, it has been shown that the probability of failure have been increased according as the berm width of foundation mound are widening and wave periods become shortening.

Local Cultural Ecosystem and Emerging Artists: A Study on Hindering Factors in Creative Activities of Young Artists in Gwangju by Adopting Creative Sector Holistic Model (지역문화생태계와 청년예술가 - Creative Sector Holistic Model을 적용한 광주 청년예술가들의 창작 활동 저해요인에 관한 연구 -)

  • Kim, Miyeon;Kim, InSul
    • Korean Association of Arts Management
    • /
    • no.51
    • /
    • pp.5-34
    • /
    • 2019
  • This study is a qualitative study conducted to identify environmental factors that impede emerging artists' ongoing creative activities, focusing on the local cultural ecosystem that they are part of. By doing so, we tried to understand the dynamics between key stake holders in the ecosystem that these young artists interact with and how they build and perceive their own, local cultural environment. The central research question of this study is: what factors impede the continuous creative activities of young artists and what causes them to leave local art scenes? The research was conducted thoroughly on the basis of emerging artists' experience and perspectives and applied to Creative Sector Holistic Model for analysis. The data of this research were collected based on two national-funding projects to support young artists from 2016 to 2018. The main research method of this study was interviews: official and casual interviews were executed with 29 young artists aged 20-34 who work in the fields of painting, literature, sculpture, video, korean traditional music, visual design and crafts. For the analysis of the data, the Creative Sector Holistic Model(Wyszomirski, 2008), which had applied the ecological logic to the creative industries, was applied. The result of this study shows that economic difficulties were not the only hindering factor in their sustainable art-making process. Various impeding factors derived from the local cultural ecosystem have been identified within the Holistic Model, demonstrating that these factors are all intertwined and connected. Thus, analyzing and understanding one's local cultural ecosystem can provide keys to long-term and lasting impacts when a local authorities wish to support young artists for the future of local cultural environment.

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Application of Remote Sensing Techniques to Survey and Estimate the Standing-Stock of Floating Debris in the Upper Daecheong Lake (원격탐사 기법 적용을 통한 대청호 상류 유입 부유쓰레기 조사 및 현존량 추정 연구)

  • Youngmin Kim;Seon Woong Jang ;Heung-Min Kim;Tak-Young Kim;Suho Bak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.589-597
    • /
    • 2023
  • Floating debris in large quantities from land during heavy rainfall has adverse social, economic, and environmental impacts, but the monitoring system for the concentration area and amount is insufficient. In this study, we proposed an efficient monitoring method for floating debris entering the river during heavy rainfall in Daecheong Lake, the largest water supply source in the central region, and applied remote sensing techniques to estimate the standing-stock of floating debris. To investigate the status of floating debris in the upper of Daecheong Lake, we used a tracking buoy equipped with a low-orbit satellite communication terminal to identify the movement route and behavior characteristics, and used a drone to estimate the potential concentration area and standing-stock of floating debris. The location tracking buoys moved rapidly during the period when the cumulative rainfall for 3 days increased by more than 200 to 300 mm. In the case of Hotan Bridge, which showed the longest distance, it moved about 72.8 km for one day, and the maximum moving speed at this time was 5.71 km/h. As a result of calculating the standing-stock of floating debris using a drone after heavy rainfall, it was found to be 658.8 to 9,165.4 tons, with the largest amount occurring in the Seokhori area. In this study, we were able to identify the main concentrations of floating debris by using location-tracking buoys and drones. It is believed that remote sensing-based monitoring methods, which are more mobile and quicker than traditional monitoring methods, can contribute to reducing the cost of collecting and processing large amounts of floating debris that flows in during heavy rain periods in the future.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.