• Title/Summary/Keyword: Environmental Operational Performance

Search Result 235, Processing Time 0.026 seconds

Improving the Contractor-subcontractor Relationship Through Partnering on Construction Projects in Zambia

  • Mudzvokorwa, Tafadzwa;Mwiya, Balimu;Mwanaumo, Erastus M.
    • Journal of Construction Engineering and Project Management
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • With the increased dependence on subcontracting in the construction industry, the operational relationship between main contractors and subcontractor plays an imperative role in successful project delivery. Consequently, improving this relationship increases the probability of project success and enhancing project performance. A wide range of research has confirmed that partnering improves the main contractor-subcontractor relationship. Though the positive impact of partnering on project performance is supported by a plethora of evidence, the guiding theory on practical partnering process steps is limited. The study aimed at improving subcontracting in the construction industry through a partnering process relevant to Zambia guided by factors obtained from industry expects. Questionnaire surveys and Semi-structured interview were adopted to investigate the perception of construction industry professionals and academics towards the main contractor-subcontractor relationship along with improvement factors. The findings showed that the relationship between main contractors and subcontractors on most projects in Zambia is unsatisfactory therefore justifying attention. Top factors that can enhance the main contractor-subcontractor relationship were identified. From the factors deduced and guidelines on partnering best practices, a project partnering model was developed.

Land Based Test of Ballast Water Treatment System by Ozonation

  • Park, Sung-Jin;Yoon, Seung-Je;Kim, In-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.383-390
    • /
    • 2010
  • This study is currently giving priority to developing the ship's ballast water treatment system using ozone (Ozone BWTS). The Ozone BWTS was tested in a full scale land-based mobile barge to evaluate performance according to the IMO G8 Guidelines. Test cycles using the mobile-barge were conducted in seawater and brackish water in the vicinity of the Port of Busan and Nakdong River, Republic of Korea. All tests were conducted according to the requirements of the G8 Guidelines. Test results show that the Ozone BWTS meets the Ballast Water Performance Standard contained in Regulation D-2 of the IMO Ballast Water Management Convention, as well as all of the operational, safety, and environmental testing requirements of the G8 Guidelines, as required for type approval of IMO. The study results show that the Ozone BWTS is capable of meeting the Ballast Water Performance Standard under Regulation D-2 of the International Convention for the Control and Management of Ships’ Ballast Water and Sediments, and also the more stringent standards being proposed under US legislation.

Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment

  • Alighardashi, Abolghasem;Pakan, Mahyar;Jamshidi, Shervin;Shariati, Farshid Pajoum
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.517-528
    • /
    • 2017
  • This study evaluates the performance of membrane bioreactor (MBR) coupled with a modified walnut shell granular activated carbon (WSGAC) for tannery wastewater treatment. For this purpose, a pilot with overall volume of 80L and 12 hours hydraulic retention time (HRT) is operated in three scenarios. Here, the chemical oxidation demand (COD) of wastewater is reduced more than 98% in both C:N ratios of 13 (S1) and 6.5 (S2). This performance also remains intact when alkalinity depletes and pH reduces below 6 (S3). The ammonium removal ranges between 99% (S2) and 70% (S3). The reliability of system in different operating conditions is due to high solids retention time and larger flocs formation in MBR. The average breakthrough periods of WSGAC are determined between 15 minutes (S2) and 25 minutes (S1). In this period, the overall nitrate removal of MBR-WSGAC exceeds 95%. It is also realized that adding no chemicals for alkalinity stabilization and consequently pH reduction of MBR effluent (S3) can slightly lengthen the breakthrough from 15 to 20 minutes. Consequently, MBR can successfully remove the organic content of tannery wastewater even in adverse operational conditions and provide proper influent for WSGAC.

The contribution of column optimization on the embodied energy performance of concrete framed buildings

  • Miller, Dane;Doh, Jeung-Hwan;Ho, Nhat Minh;Peters, Tim
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.564-567
    • /
    • 2015
  • The incorporation of sustainability principles into the structural engineering design of buildings is increasingly important. Historically the focus of improvements to the environmental performance of structures has been operational energy considerations. Current research has highlighted the requirement for changing the approach by increasing the consideration of embodied energy in structures. This research was conducted to build on previous research by the authors in quantifying the contribution of column optimization to the embodied energy performance of concrete framed buildings. Ultimately, the authors intend to develop mechanisms through which sustainable design can be quantified, enabling alleviation prior to construction. Columns are a key structural element to consider as part of this development process. The outcomes of this assessment reinforced previous findings, observing that reduced structural weight as a result of other sustainable design measures carries manifold benefits include column design savings. Through the quantification of the embodied energy outcomes during this research phase, the columns were shown to contribute up to 19.71% of the total embodied energy of the structural system dependent upon construction technique used.

  • PDF

WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer (WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증)

  • Byun, Ui-Yong;Hong, Song-You;Shin, Hyeyum;Lee, Ji-Woo;Song, Jae-Ik;Hahm, Sook-Jung;Kim, Jwa-Kyum;Kim, Hyung-Woo;Kim, Jong-Suk
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

Reduction of waterborne microorganisms in treated domestic wastewater for reuse in agriculture: Comparison between floating media filter and sand filter

  • Semsayun, Chalanda;Chiemchaisri, Wilai;Chiemchaisri, Chart;Patchanee, Nopparat
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • This study aims to investigate the use of a floating media filter (FMF) to eliminate waterborne microorganism in treated domestic wastewater for reuse in agriculture. A conventional sand filter (SF) was used concurrently to compare treated water quality. The total/fecal coliforms and somatic coliphage were employed as fecal indicators. The result showed that the FMF was fed with 3 times higher infiltration rate ($15m^3/m^2.h$) than that in the SF ($5m^3/m^2.h$), in which both filters gave similar coliform removal at 6 hours operation. The somatic coliphage elimination tended to increase with operational time for the FMF while that of the SF showed decreasing trend. When a 24 hour continuous operation was applied for the FMF, it showed better removal of somatic coliphage (78%), fecal coliforms (60%) and total coliforms (56%) than that of 6 hour operation. In conclusion, the FMF gave better performance than the SF did by producing a good quality of treated water for agriculture in terms of waterborne microorganisms including turbidity and suspended solids.

Effects of Operational Parameters on the Removal of Acid Blue 25 Dye from Aqueous Solutions by Electrocoagulation

  • Balarak, Davoud;Ganji, Fatemeh;Choi, Suk Soon;Lee, Seung Mok;Shim, Moo Joon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.742-748
    • /
    • 2019
  • Influence of several experimental parameters (e.g., initial dye concentration, pH, distance between electrodes, applied voltage, electrical conductivity, current density, and reaction time) on the performance of electrocoagulation (EC) process for the removal of acid blue 25 (AB25) was studied. A bipolar batch reactor was used to test the impact of the parameters. The removal efficiency (RE) of AB25 dye was promoted by increasing the contact time, voltage, electrical conductivity, and applied current density. In contrast, RE of AB25 decreased with higher level of AB25 and the longer distance between electrodes. The removal efficiency increased consistently until pH 7, but decreased above pH 7. The maximum efficiency of AB25 removal above 90% was obtained at a voltage of 60 V, reaction time of 90 min, distance between electrodes of 0.5 cm, initial concentration of 25 mg/L, conductivity of 3,000 μS/cm and pH of 7. These results imply that the high RE of AB25 dye from the aqueous solution can be achieved by EC process.

포말 분리법에 의한 양어장의 단백질 제거

  • 서근학;이회근
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.41-45
    • /
    • 1998
  • The feasibility of foam separation to remove protein in aquacultural recirculating water was investigated. From the results of batch foam separation on protein removal, superficial air velocity and initial protein concentration in bulk solution were found to be important operational factors In determining removal rates of protein. The protein removal rate by batch foam separation was proportionally increased with the superficial air velocity. Performance characteristics of continous foam separator were highly dependent upon the operating parameters of superficial air velocity, hydraulic retention time(HRT) and foam height. Removal effeciency of protein increases with increasing superficial air velocity and HRT, and independent on foam height. As DO concentration was increased with superficial air velocity, foam separator is also used for oxygen addition. It could be confinned that foam separator might offer better perspective for protein removal in aquacuitural recirculating water.

  • PDF

An Overview of NRC Projects in Wastewater Treatment by Membrane Processes

  • Kumar, Ashwani
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.55-66
    • /
    • 1997
  • A brief introduction to NRC's research activities will be given with special emphasis on membrane processes. NIRC's membrane research group has been involved in many membrane research projects with industrial clients in various sectors of the industry. These projects generally were focused on using membranes for treating industrial wastewater streams for recycling process water, recovering of valuable components and meeting the environmental regulations. The group looked in to various aspects of process development dealing with membrane performance evaluation, optimization of operational parameters, determination of fouling propensities of membranes and simple cost analyses in some cases. Case studies dealing with process development for effluent treatment for the pulp & paper, mining & mineral processing and poultry processing industries will be discussed briefly.

  • PDF

Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis

  • Zhang, Lin-Hao;Wang, You-Wu;Ni, Yi-Qing;Lai, Siu-Kai
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.705-713
    • /
    • 2018
  • High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.