• Title/Summary/Keyword: Environmental Impacts

Search Result 1,757, Processing Time 0.027 seconds

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

Impacts of Energy Tax Reform on Electricity Prices and Tax Revenues by Power System Simulation (전력계통 모의를 통한 에너지세제 개편의 전력가격 및 조세수입에 대한 영향 연구)

  • Kim, Yoon Kyung;Park, Kwang Soo;Cho, Sungjin
    • Environmental and Resource Economics Review
    • /
    • v.24 no.3
    • /
    • pp.573-605
    • /
    • 2015
  • This study proposed scenarios of tax reform regarding taxation on bituminous coal for power generation since July 2015 and July 2014, estimated its impact on SMP, settlement price, tax revenue from year 2015 to year 2029. These scenarios are compared with those of the standard scenario. To estimate them, the power system simulation was performed based on the government plan, such as demand supply program and the customized model to fit Korea's power system and operation. Imposing a tax on bituminous coal for power generation while maintaining tax neutrality reducing tax rate on LNG, the short-term SMP is lowered than the one of the standard scenario. Because the cost of nuclear power generation is still smaller than costs of other power generation, and the nuclear power generation rarely determines SMPs, the taxation impact on SMP is almost nonexistent. Thus it is difficult to slow down the electrification of energy consumption due to taxation of power plant bituminous coal in the short term, if SMP and settlement price is closely related. However, in the mid or long term, if the capacity of coal power plant is to be big enough, the taxation of power plant bituminous coal will increase SMP. Therefore, if the tax reform is made to impose on power plant bituminous coal in the short term, and if the tax rate on LNG is to be revised after implementing big enough new power plants using bituminous coal, the energy demand would be reduced by increasing electric charges through energy tax reform. Both imposing a tax on power plant bituminous coal and reducing tax rate on LNG increase settlement price, higher than the one of the standard scenario. In the mid or long term, the utilization of LNG complex power plants would be lower due to an expansion of generating plants, and thus, the tax rate on LNG would not affect on settlement price. Unlike to the impact on SMP, the taxation on nuclear power plants has increased settlement price due to the impact of settlement adjustment factor. The net impact of energy taxation will depend upon the level of offset between settlement price decrease by the expansion of energy supply and settlement price increase by imposing a tax on energy. Among taxable items, the tax on nuclear power plants will increase the most of additional tax revenue. Considering tax revenues in accordance with energy tax scenarios, the higher the tax rate on bituminous coal and nuclear power, the bigger the tax revenues.

Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea (대청호 발전방류수의 인·탁수 배출 역동성과 육수·수문학적 영향)

  • Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Daecheong Reservoir was made by the construction of a large dam (>15 m in height) on the middle to downstream of the Geum River and the discharge systems have the watergate-spillway (WS), a hydropower penstock (HPP), and two intake towers. The purpose of this study was to investigate the limnological anomalies of turbid water reduction, green algae phenomenon, and oligotrophic state in the lower part of reservoir dam site, and compared with hydro-meteorological factors. Field surveys were conducted in two stations of near dam and the outlet of HPP with one week intervals from January to December 2000. Rainfall was closely related to the fluctuations of inflow, outflow and water level. The rainfall pattern was depended on the storm of monsoon and typhoon, and the increase of discharge and turbidity responded more strongly to the intensity than the frequency. Water temperature and DO fluctuations within the reservoir water layer were influenced by meteorological and hydrological events, and these were mainly caused by water level fluctuation based on temperature stratification, density current and discharge types. The discharges of WS and HPP induced to the flow of water bodies and the outflows of turbid water and nutrients such as nitrogen and phosphorus, respectively. Especially, when hypoxic or low-oxygen condition was present in the bottom water, the discharge through HPP has contributed significantly to the outflow of phosphorus released from the sediment into the downstream of dam. In addition, HPP effluent which be continuously operated throughout the year, was the main factor that could change to a low trophic level in the downreservoir (lacustrine zone). And water-bloom (green-tide) occurring in the lower part of reservoir was the result that the water body of upreservoir being transported and diffused toward the downreseroir, when discharging through the WS. Finally, the hydropower effluent was included the importance and dynamics that could have a temporal and spatial impacts on the physical, chemical and biological factors of the reservoir ecosystem.

Morphological Adaptation of Zostera marina L. to Ocean Currents in Korea (한국산 거머리말(Zostera marina L.)의 해류에 대한 형태적 적응)

  • Lim, Dong-Ok;Yun, Jang-Tak;Han, Kyung-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The main purpose of this research is to prepare and provide basic materials for the propagational strategy of eelgrass by investigating on the morphological adaptation of Korean Zostera marina to ocean currents. An eelgrass plant mainly consists of rhizome, leaf sheath, leaves and roots. The rhizome is the horizontal stem of the plant that serves as the backbone from which the leaves and roots emerge. The leaf sheath is the bundle at the base of the leaves that holds the leaves together, protecting the meristem, the primary growth point of the shoot. Leaves originate from a meristem which is protected by a sheath at the actively growing end of the rhizome. As the shoot grows, the rhizome elongates, moving across or within the sediment, forming roots as it progresses. The aggregated leaves from the leaf sheath are found to have two cell layers on one side and multiple layers of airy tissues called aerenchyma on the other. The aerenchyma tissues are developed in multi-layered cell structures surrounding the veins which are formed in the leaf sheath. Generative shoots are made of rhizomes, which are circular or ovoidal, stem, and spathe and spadix. The transverse section of rhizome and the stem and central floral axis is found to be circular, ovoid and in the shape of convex respectively, and the vascular bundle, which is a part of transport system, has one large tube in the center and two small tubes on both sides. The layers of collenchyma cells numbered from 12 to 15 in the stem, and from 7 to 12 in the rhizome. The seed coat is composed of sclereids, small bundles of sclerenchyma tissues, which prevent the influx of sea water from the outside and help endure the environmental stress. In conclusion, alternative multi-layer structure in circular, convex type aggregated leaf base are interpreted to morphological adaption as doing tolerable elastic structure through movement of seawater. The generative shoots develop long slim stem and branches in circular or ovoidal shapes to minimize the adverse impacts of sea current, which can be interpreted as the plant's morphological adaptation to its environment.

Changes on Growth, Photosynthesis and Pigment contents of the Maackia amurensis and Viburnum opulus var. calvescens under Enhanced Temperature and CO2 Concentration (온도와 CO2 농도 증가에 따른 다릅나무와 백당나무의 생장, 광합성 및 광색소 함량 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil-Nam;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.3
    • /
    • pp.115-122
    • /
    • 2011
  • The impacts of elevated temperature and $CO_2$ were studied on the seedlings of Maackia amurensis and Viburnum opulus var. calvescens. The seedlings were grown in controlled-environment growth chambers with four combinations of temperature and $CO_2$ treatments: $25^{\circ}C$ + ambient $CO_2$ (400 ppm), $25^{\circ}C$ + elevated $CO_2$ (800 ppm), $30^{\circ}C$ + ambient $CO_2$ (400 ppm), and $30^{\circ}C$ + elevated $CO_2$ (800 ppm). Under elevated temperature and $CO_2$ concentration, the dry weight decreased in seedlings of M. amurensis, but increased in seedlings of V. opulus var. calvescens. In addition, the shoot to root (S/R) ratio in M. amurensis reduced but that of V. opulus var. calvescens increased under elevated $CO_2$ concentration. The S/R ratios of two tree species increased under higher temperature. M. amurensis represented lower carboxylation efficiency under higher temperature and $CO_2$ concentration and that of V. opulus var. calvescens showed lower values under the only higher temperature. Photosynthetic pigment content of in the leaves of M. amurensis was lower under higher $CO_2$ concentration and higher under the increase of temperature, but that of V. V. opulus var. calvescens decreased according to the increase of temperature. Chlorophyll a/b ratios of M. amurensis and V. V. opulus var. calvescens decreased obviously with the increase of $CO_2$ concentration and temperature, respectively. In conclusion, the growth and physiological responses under the environmental changes such as temperature and $CO_2$ concentration depend on the tree species. Therefore, more studies are needed to predict the response of each tree species against the climate changes.

A study on Perception and Response Strategy of Korean Ship Owners on Global Sulphur Cap 2020 (황산화물(SOx) 배출 저감 규제에 대한 국적선사의 인식과 대응 전략에 관한 연구)

  • Lee, Choong-Ho;Kim, Hyun-Jung;Park, keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.4
    • /
    • pp.141-160
    • /
    • 2018
  • In this paper, to analyze the perception and response strategy of Korean ship owners on Global Sulphur Cap 2020, examined the IMO environmental regulation status focusing on MARPOL Annex VI regulation about air pollution prevention, technological measures to reduce SOx emission, shipping industry and management status of Korean ship owners. First of all, the questionnaire was conducted for Korean ship owners after selecting the evaluation factors. The purpose of this study was to investigate the difference of the perception and response strategy of Korean ship owners by corporation size and main vessel type using frequency and cross analysis. It is confirmed that various researches on SOx emission reduction have been carried out from various points of view at home and abroad. In this study, existing studies related to technical factors for regulatory response and economics analysis were examined and evaluation factors were selected. As a result of analysis, it is found that large-sized shipping companies are more prepared for regulatory response than small and medium-sized bulk carrier owners. There were similar perception and the direction of response strategy about the impacts by corporation size and main vessel type. In about two years to be implemented in 2020, It is necessary to find an appropriate response strategy based on the support policy of the government and related organizations and the systematic analysis of the ship owners. Through this study, although the difference between the perception and response strategy of the ship owners by corporation size and main vessel type was understood, it was found that there were limitations on specific response strategy and corporate data collection. In future research, we should overcome the limitations of this study and conduct an in-depth study.

Response of Soil Properties to Land Application of Pig Manure Liquid Fertilizer in a Rice Paddy (돈분뇨 액비가 시용된 논토양 특성 변화)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Kang, Seong-Soo;Han, Min-Soo;Jung, Goo-Bok;Kang, Kee-Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.4
    • /
    • pp.97-105
    • /
    • 2011
  • A wide diversity of liquid fertilizers and composts produced from the livestock manure in Korea is commonly applied to agricultural lands as an alternative of chemical fertilizers. However, their effects on the crop production and environmental impacts are still vague. The current study was investigated the property changes of paddy soils in sandy loam and silty loam treated with 1) control (no treatment), 2) chemicals, 3) storage liquid fertilizer and 4) SCB liquid fertilizer located in Gyeong-gi province, Korea. The chemical properties of soils in sandy loam and silty loam before the treatment were similar with the ones in the average paddy fields in Korea. Contrary to this, the amount of available phosphorus in sandy loam was higher than the one in the average paddy fields. The number of living organisms in sandy loam and silty loam treated with storage liquid fertilizer and SCB liquid fertilizer were higher than the ones in sandy loam and silty loam with no-treatment and chemicals. Significant difference (P<0.05) among the treatments and no-treatment was observed in sandy loam rather than in silty loam. The amounts of heavy metals were the highest in both sandy loam and silty loam treated with storage liquid fertilizer and SCB liquid fertilizer. The comparison of heavy metals showed that the ones in silty loam were little bit higher than sandy loam. The leaf lengths and dry weights of rices were increased over time, however, no significant difference was observed among each treament. In addition, the rice yield in sandy loam treated with SCB liquid fertilizer was higher than the ones in sandy loam. The highest rice yield was obtained from sandy loam treated with chemicals, but there was no significant difference between storage liquid fertilizer and SCB liquid fertilizer. While the rate of nutrient absorption by rices was the highest in sandy loam and silty loam treated with chemicals, there was no significant difference in sandy loam and silty loam treated with livestock liquid manure.

Assessment of Productivity and Vulnerability of Climate Impacts of Forage Corn (Kwangpyeongok) Due to Climate Change in Central Korea (국내 중부지역에 있어서 기후변화에 따른 사료용 옥수수의 생산성 및 기후영향취약성 평가)

  • Chung, Sang Uk;Sung, Si Heung;Zhang, Qi-Man;Jung, Jeong Sung;Oh, Mirae;Yun, Yeong Sik;Seong, Hye Jin;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.105-113
    • /
    • 2019
  • A two-year study was conducted from 2017 to 2018 by the establishment of a test field at Chungju-si and Cheongyang-gun. Plant height, number of leaves, insects and diseases, and fresh and dry matter yields for corn hybrid('Kwangpyeongok') were investigated. Daily average, maximum, and minimum temperature, monthly average temperature, daily precipitation, and sunshine duration during the growing season were investigated. We selected climate-critical factors to corn productivity and conducted an evaluation of vulnerability to climate change from 1999 to 2018 for both regions. In 2018, the dry matter yield of forage corn was 6,475 and 7,511 kg/ha in Chungju and Cheongyang, respectively, which was half of that in 2017. The high temperature and drought phenomenon in the 2018 summer caused the corn yield to be low. As well as temperature, precipitation is an important climatic factor in corn production. As a result of climate impact vulnerability assessment, the vulnerability has increased recently compared to the past. It is anticipated that if the high temperature phenomenon and drought caused by climate change continues, a damage in corn production will occur.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Reliability Analysis on Stability of Armor Units for Foundation Mound of Composite Breakwaters (혼성제 기초 마운드의 피복재 안정성에 대한 신뢰성 해석)

  • Cheol-Eung Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.23-32
    • /
    • 2023
  • Probabilistic and deterministic analyses are implemented for the armor units of rubble foundation mound of composite breakwaters which is needed to protect the upright section against the scour of foundation mounds. By a little modification and incorporation of the previous empirical formulas that has commonly been applied to design the armor units of foundation mound, a new type formula of stability number has been suggested which is capable of taking into account slopes of foundation mounds, damage ratios of armor units, and incident wave numbers. The new proposed formula becomes mathematically identical with the previous empirical formula under the same conditions used in the developing process. Deterministic design have first been carried out to evaluate the minimum weights of armor units for several conditions associated with a typical section of composite breakwater. When the slopes of foundation mound become steepening and the incident wave numbers are increasing, the bigger armor units more than those from the previous empirical formula should be required. The opposite trends however are shown if the damage ratios is much more allowed. Meanwhile, the reliability analysis, which is one of probabilistic models, has been performed in order to quantitatively verify how the armor unit resulted from the deterministic design is stable. It has been confirmed that 1.2% of annual encounter probability of failure has been evaluated under the condition of 1% damage ratio of armor units for the design wave of 50 years return period. By additionally calculating the influence factors of the related random variables on the failure probability due to those uncertainties, it has been found that Hudson's stability coefficient, significant wave height, and water depth above foundation mound have sequentially been given the impacts on failure regardless of the incident wave angles. Finally, sensitivity analysis has been interpreted with respect to the variations of random variables which are implicitly involved in the formula of stability number for armor units of foundation mound. Then, the probability of failure have been rapidly decreased as the water depth above foundation mound are deepening. However, it has been shown that the probability of failure have been increased according as the berm width of foundation mound are widening and wave periods become shortening.