• Title/Summary/Keyword: Environmental Costs

Search Result 1,287, Processing Time 0.028 seconds

출연(연)의 신기술개발 동향분석 연구

  • 이병민
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2003.05a
    • /
    • pp.413-425
    • /
    • 2003
  • Information Technology is the kernel technology deciding the industrial standard of one nation, and biotechnology will be the main technology of next generation. Based on this fact, a lot of efforts were made to industrialize them. Nano Technology is beginning to position itself as the kernel fusion technology, and its usage and popularity is expanding. Environmental and Energy Technology is a must-have strategic technology considering the increase demand of new energy development, the international environment correspondence, the environment-friendly production, and so forth. Space Technology is the field, which will contribute to raise the domestic component and system technology to the next level. In 2001, new technology research development costs total of 1 trillion 32 billion won in the following fields; 437.82 billion won in IT, 88.457 billion won in BT, 46.799 billion won in NT, 315.682 billion won in ET, and 112 billion won in ST. from component ratio, IT forms 42% which is the most, 31% for ET and in order of BT, ST and NT. ETRI and KISTI are concentrating on IT, KIBB is on BT, KAERI, KIER, KERI and KBSI are focusing on ET, and KIMM, KRISS, KRICT and KORDI is participating together in 4∼5 new technology such as IT, BT, NT and ET. Funds for research development costs in 5 new technology fields of 13 contribution (year) are consisted as follows; The Office for Government Policy Coordination has contributed 131 billion won (13%), 387 billion won (37%) by MOST, 256 billion won (25%) by Ministry of Information and Communication, 67 billion won (6%) by Ministry of Commerce, Industry and Energy, 19% by others and the industrial world. < Strategy for Technology Advancing > o Promotion of comprehensive contributing (year) new technology development research plan project o Increase research efficiency by promoting new technology development project connected with peculiar projects of organization by contribution (year) o Formation of superior research group by technology and introduction of operation system for research accumulation are needed. o Technology demand-oriented assignment deduction and promotion of research development project connected with intermediate long term objective o National will and investment extension of research development costs, training and popularization of professionals, commercialization promotion with efficient control for research plan and result.

  • PDF

Macro-level Methodology for Estimating Carbon Emissions, Energy Use, and Cost by Road Type and Road Life Cycle (도로 종류와 도로생애주기별 탄소배출량, 에너지소모량 및 비용에 대한 거시적 분석방법)

  • Hu, Hyejung;Baek, Jongdae
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.143-150
    • /
    • 2015
  • PURPOSES : The authors set out to estimate the related carbon emissions, energy use, and costs of the national freeways and highways in Korea. To achieve this goal, a macro-level methodology for estimating those amounts by road type, road structure type, and road life cycle was developed. METHODS : The carbon emissions, energy use, and costs associated with roads vary according to the road type, road structure type, and road life cycle. Therefore, in this study, the road type, road structure type, and road life cycle were classified into two or three categories based on criteria determined by the authors. The unit amounts of carbon emissions and energy use per unit road length by classification were estimated using data gathered from actual road samples. The unit amounts of cost per unit road length by classification were acquired from the standard cost values provided in the 2013 road business manual. The total carbon emissions, energy use, and cost of the national freeways and highways were calculated by multiplying the road length by the corresponding unit amounts. RESULTS: The total carbon emissions, energy use, and costs associated with the national freeways and highways in Korea were estimated by applying the estimated unit amounts and the developed method. CONCLUSIONS: The developed method can be employed in the road planning and design stage when decision makers need to consider the impact of road construction from an environmental and economic point of view.

The Effectiveness of New Power Generation and Energy Demand Reduction to Achieve Greenhouse Gas Reduction Goals in Building Area

  • Park, Seong-Cheol;Kim, Hwan-Yong;Song, Young-Hak
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • Since the massive power outages that hit across the nation in September 2011, a growing imbalance between energy supply and demand has led to a severe backup power shortage. To overcome the energy crisis which is annually repeated, a policy change for deriving energy supply from renewable energy sources and a demand reduction strategy has become essential. Buildings account for 18% of total energy consumption and have great potential for energy efficiency improvements; it is an area considered to be a highly effective target for reducing energy demand by improving buildings' energy efficiency. In this regard, retrofitting buildings to promoting environmental conservation and energy reduction through the reuse of existing buildings can be very effective and essential for reducing maintenance costs and increasing economic output through energy savings. In this study, we compared the energy reduction efficiency of national power energy consumption by unit production volume based on thermal power generation, renewable energy power generation, and initial and operating costs for a building retrofit. The unit production was found to be 13,181GWh/trillion won for bituminous coal-fired power generation, and 5,395GWh/trillion won for LNG power generation, implying that LNG power generation seemed to be disadvantageous in terms of unit production compared to bituminous coal-fired power generation, which was attributable to a difference in unit production price. The unit production from green retrofitting increased to 38,121GWh/trillion won due to the reduced energy consumption and benefits of greenhouse gas reduction costs. Renewable energy producing no greenhouse gas emissions during power generation and showed the highest unit production of 75,638GWh/trillion won, about 5.74 times more effective than bituminous coal-fired power generation.

Analysis of the Factors Influencing the Demolition Costs (건축물 해체공사비 변동 영향요인 분석)

  • Shin, Dong-Wook;Cho, Kyu-Man;Lee, Ung-Kyun;Kim, Tae-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.499-506
    • /
    • 2018
  • The number of demolition work is rapidly increasing because the middle- and high-rised buildings constructed over the rapid industrialization and urbanization have been deteriorated in social and structural aspects. However, theoretical approaches or studies related to the demolition cost prediction are still insufficient. Thus, this study derived and analyzed important factors affecting the fluctuation of the building demolition costs. 14 factors was derived through literature reviews and experts' interview, and the importance of each factor was analyzed to the each work(temporary work, structure demolition, and waste disposal) and the entire demolition work by using descriptive analysis. The survey results showed that the demolition costs was greatly influenced by environmental properties of the site. The results of this study can be used as a basis for estimating the approximate cost of the demolition work.

Improving the Estimation Method of Traffic Congestion Costs (교통혼잡비용 추정방법의 개선방안 연구)

  • Jo, Jin-Hwan;Hwang, Gi-Yeon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.63-74
    • /
    • 2010
  • Recently, there has been increasing demand from academic society in Korea for the improvement of current traffic congestion cost estimation methods. The purpose of this study is to suggest a better way to estimate congestion cost followed by in-depth review regarding traffic congestion. The key improvements proposed in this study include: 1) adding social externality to congestion cost, 2) integrating the green house and environmental pollution impacts with congestion costs, 3) taking non-recurrent traffic congestion costs into account for the assessment, 4) revising the criteria to determining the level of traffic congestion speed, and 5) deciding how to limit congestion measurement period. It is found meaningful that the improvements, notwithstanding difficulties in their real case application, provide invaluable insights in our efforts to change the meaning of congestion cost in an era of sustainable growth.

A Comparative Study on NIMBY to Nuclear Power Plants (원자력발전소에 대한 님비의 정량적 측정과 비교)

  • Won, DooHwan
    • Environmental and Resource Economics Review
    • /
    • v.28 no.4
    • /
    • pp.557-581
    • /
    • 2019
  • This study tries to quantify the regional NIMBY costs to nuclear power plants. NIMBY costs are estimated as willingness to pays for avoiding nuclear power plants near residential areas through the contingent valuation method(CVM). In the study, it was assumed that the nuclear power plants were newly constructed around the residences. The result of 600 respondents living within a radius of 30 km of nuclear power plants compared to the result of 600 respondents living in the metropolitan area, which revealed that there were significant NIMBY costs to the construction of nuclear power plants in all residences. By region, the willingness to pay in the metropolitan area was greater than that in the nuclear power areas. This study focuses on NIMBY to nuclear power plants from a regional point of view, which can provide important information in establishing prudent and sound nuclear power policies.

The use of cost-benefit analysis in performance-based earthquake engineering of steel structures

  • Ravanshadnia, Hamidreza;Shakib, Hamzeh;Ansari, Mokhtar;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.561-570
    • /
    • 2022
  • It is of great importance to be able to evaluate different structural systems not only based on their seismic performance but also considering their lifetime service costs. Many structural systems exist that can meet the engineering requirements for different performance levels; therefore, these systems shall be selected based on their economic costs over time. In this paper, two structural systems, including special steel moment-resisting and the ordinary concentric braced frames, are considered, which are designed to meet the three performance levels: Immediate Occupancy (IO), Life Safety (LS), Collapse Prevention (CP). The seismic behavior of these two systems is studied under three strong ground motions (i.e., Tabas, Bam, Kajour earthquake records) using the Perform3D package, and the incurred damages to the studied systems are examined at two hazard levels. Economic analyses were performed to determine the most economical structural system to meet the specified performance level requirements, considering the initial cost and costs associated with damages of an earthquake that occurred during their lifetime. In essence, the economic lifetime study results show that the special moment-resisting frames at IO and LS performance levels are at least 20% more economical than braced frames. The result of the study for these building systems with different heights designed for different performance levels also shows it is more economical from the perspective of long-term ownership of the property to design for higher performance levels even though the initial construction cost is higher.

A Study on the Management Risk Factors of Korean Firms in China (국내 중소·벤처기업의 중국진출 경영위험요인에 관한 연구)

  • Lee, Dong-Hoon;Lee, Dong-Myung
    • Korea Trade Review
    • /
    • v.42 no.1
    • /
    • pp.1-25
    • /
    • 2017
  • By applying the AHP(Analytic Hierarchy Process), we have analyzed the importance and the order for priorities to the management risk factors of Korean SMEs & Venture companies in China. The major management risk factors of manufacturing companies were the rise in labor costs followed by fierce competition in the marketplace, problems involved with human resource management and the rise in the cost of materials. In the case of companies manufacturing electronic products, the rise of labor costs and alteration in government's tax policy were seen as the main risk factors. In the case of chemical product manufacturing companies, the reinforcement of environmental protection law and in automobile component manufacturing companies, apart from the rise in labor cost, the increase in raw materials costs were analyzed as the main risk factors. While considering the time period, the main risk factors of the companies that entered China in the 1990's were fierce competition and alteration in government's tax policy and for the companies that entered China in the 2000's, increase in raw material cost, the rise in labor cost etc were analyzed to be the main risk management factors.

  • PDF

A Study on the Development of Optimal Renewal Planning Model in Water Supply Facilities Connected to Future Financial Plan of Water Providers (수도사업자의 장래 재정계획과 연계한 상수도시설의 최적 개량계획 수립 모델 개발 연구)

  • Lim, Sanghyun;Shin, Hwisu;Seo, Jeewon;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.149-159
    • /
    • 2017
  • It is considered necessary to renewal a considerable number of water supply facilities in Korea because they began to be intensively buried in the period of rapid economic growth. Accordingly, local water providers are required to take measures against this situation, but they have currently been caught in a vicious circle of the lack of budget spent in renewing water supply facilities because county-based small-scale local water supply cannot afford to cover annual expenditures with their revenues from water rates. Therefore, this study developed an optimal renewal planning model capable of achieving a balance of financial revenue and expenditure in local water supply using nonlinear programming and furthermore of minimizing the total cost incurred during the analysis. To this end, this study selected the water supply area located in County Y as a research area to build the financial revenue and expenditure and used Solver function provided by Microsoft Excel to use nonlinear programming. As a result, this study developed an optimal renewal planning model minimizing incurred costs in consideration of 6 items in the financial revenue and expenditure. The optimal renewal plan was modeled according to the available annual budget. As a result, this study proposed SICD, a scenario to minimize total costs from the perspective of water suppliers, and SITS, a scenario to minimize the increase in water rates from the perspective of consumers. It can be said that the method proposed in this study is the core of the optimal financial and renewal plans as a final stage of asset management for water supply facilities. Therefore, it is considered possible for local water providers to use the method proposed in this study according to circumstances for the asset management of water supply facilities.

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.