• 제목/요약/키워드: Environmental Chamber

검색결과 904건 처리시간 0.023초

Evaluation of an Ammonia Passive Sampler Using Chamber System

  • Yim, Bong-Been;Kim, Sun-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제22권E1호
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate the efficiency of a passive sampler in measuring atmospheric ammonia concentrations using chamber system. The ability of the passive sampler to quantitatively determine atmospheric ammonia gas was almost identical to that of the reference method (indophenol method). There was no significant difference between concentrations measured by the two methods. The detection and quantification limits of the ammonia passive sampler were 16.9 ppb and 25.3 ppb, respectively, for a 24-h sampling period. The average coefficient of variation between replicated samplers was $6.7{\pm}4.2%$. The concentrations measured by the two methods (passive sampler and indophenol method) were no significant difference with good a correlation (correlation coefficient=0.964).

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • 분석과학
    • /
    • 제34권1호
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

Preliminary Study on the Cloud Condensation Nuclei (CCN) Activation of Soot Particles by a Laboratory-scale Model Experiments

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권4호
    • /
    • pp.175-183
    • /
    • 2014
  • To visually and chemically verify the rainout of soot particles, a model experiment was carried out with the cylindrical chamber (0.2 m (D) and 4 m (H)) installing a cloud drop generator, a hydrotherometer, a particle counter, a drop collector, a diffusing drier, and an artificial soot particle distributer. The processes of the model experiment were as follows; generating artificial cloud droplets (major drop size : $12-14{\mu}m$) until supersaturation reach at 0.52%-nebulizing of soot particles (JIS Z 8901) with an average size of $0.5{\mu}m$-counting cloud condensation nuclei (CCN) particles and droplets by OPC and the fixation method (Ma et al., 2011; Carter and Hasegawa, 1975), respectively - collecting of individual cloud drops - observation of individual cloud drops by SEM - chemical identifying of residual particle in each individual droplet by SEM-EDX. After 10 minutes of the completion of soot particle inject, the number concentrations of PM of all sizes (> $0.3{\mu}m$) dramatically decreased. The time required to return to the initial conditions, i.e., the time needed to CCN activation for the fed soot particles was about 40 minutes for the PM sized from $0.3-2.0{\mu}m$. The EDX spectra of residual particles left at the center of individual droplet after evaporation suggest that the soot particles seeded into our experimental chamber obviously acted as CCN. The coexistence of soot and mineral particle in single droplet was probably due to the coalescence of droplets (i.e., two droplets embodying different particles (in here, soot and background mineral particles) were coalesced) or the particle capture by a droplet in our CCN chamber.

Analysis of Variables Effects in 300mm PECVD Chamber Cleaning Process Using NF3

  • Sang-Min Lee;Hee-Chan Lee;Soon-Oh Kwon;Hyo-Jong Song
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.114-122
    • /
    • 2024
  • NF3, Chamber cleaning gas, has a high Global Warming Potential (GWP) of 17,000, causing significant greenhouse effects. Reducing gas usage during the cleaning process is crucial while increasing the cleaning Rate and reducing cleaning standard deviation (Stdev). In a previous study with a 6-inch PECVD chamber, a multiple linear regression analysis showed that Power and Pressure had no significant effect on the cleaning Rate because of their P-values of 0.42 and 0.68. The weight for Flow is 11.55, and the weights for Power and Pressure are 1.4 and 0.7. Due to the limitations of the research equipment, which differed from those used in actual industrial settings, it was challenging to assess the effects in actual industrial environment. Therefore, to show an actual industrial environment, we conducted the cleaning process on a 12-inch PECVD chamber, which is production-level equipment, and quantitatively analyzed the effects of each variable. Power, Pressure, and NF3 Flow all had P-values close to 0, indicating strong statistical significance. The weight for Flow is 15.68, and the weights for Power and Pressure are 4.45 and 5.24, respectively, showing effects 3 and 7 times greater than those with the 6-inch equipment on the cleaning rate. Additionally, we analyzed the cleaning Stdev and derived that there is a trade-off between increasing the cleaning Rate and reducing the cleaning Stdev.

  • PDF

소방 실화재 훈련에서 사용하는 압축목재 가연물에서 발생하는 유해물질 특성 (Characteristics of Hazardous Substances Generated from Combustible Compressed Wood Used during Live Fire Training for Firefighters)

  • 이용호;김진희;김의진;최원준;이완형;강성규;이소연;함승헌
    • 한국환경보건학회지
    • /
    • 제46권5호
    • /
    • pp.555-564
    • /
    • 2020
  • Objectives: To identify and investigate through qualitative and quantitative analysis the hazardous substances generated when compressed wood was burned at a live fire-training center. Methods: Four types of compressed wood that are actually used in live fire training were burned in a chamber according to KS F2271. The gaseous material was sampled with a gas detector tube and conventional personal samplers. Results: 1,3-butadiene, benzene, toluene, xylene, formaldehyde, hydrogen chloride, hydrogen cyanide, ammonia, carbon monoxide, and nitric acid were detected. In particular, 1,3-butadiene (497.04-680.44 ppm), benzene (97.79-125.02 ppm), formaldehyde (1.72-13.03 ppm), hydrogen chloride (4.71-15.66 ppm), hydrogen cyanide (3.64-8.57 ppm), and sulfuric acid (3.85-5.01 ppm) exceeded the Korean Occupational Exposure Limit as measured by sampling pump according to the type of compressed wood. Conclusions: We found through the chamber testing that firefighters could be exposed to toxic substances during live fire training. Therefore, firefighter protection is needed and more research is required in the field.

소형방출챔버를 이용한 방향제의 휘발성 유기화합물 방출특성에 관한 연구 (Emission Characteristics of Volatile Organic Compounds from Air Fresher using Small Emission Chamber)

  • 정영림;박현희;오윤희;김순근;손종렬;김선화;유영재;배귀남;김만구
    • 대한환경공학회지
    • /
    • 제33권3호
    • /
    • pp.183-190
    • /
    • 2011
  • 소형방출챔버를 이용하여 반응조건(시료량, 온도, 환기횟수)에 따라 방향제에서 방출되는 휘발성 유기화합물의 배출특성을 조사하였다. 시료부하량($1.4{\sim}551.0g/m^2$)에 따라 방향제에서 방출되는 TVOC 방출량은 방출시험 5시간 후 $0.7{\sim}64.4mg/m^2{\cdot}hr$로 나타났다. Limonene, ${\alpha}$-pinene과 linalool 등 방향제에서 방출된 주요 휘발성 유기화합물은 온도와 환기횟수가 클수록 방출량이 증가한 것으로 나타났다. 이들 연구결과는 방향제와 같은 생활용품의 오염물질 방출시험방법 및 방출기준을 정립하기 위한 기초자료로 활용될 것으로 생각된다.

토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토 (Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis)

  • 김영욱;박영복;김이삭;김낙경
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.677-683
    • /
    • 2016
  • 도심지에서는 고도의 경제성장과 더불어 증가되는 교통량을 수용하기 위하여 도로와 철도 신설에 따른 지하터널 공사가 활발히 진행되고 있다. 지하공간 개발에서는 토사터널 구간이 많을 수 있고 이에 따른 막장 및 천단부 안정성을 고려한 여러 공법들이 개발 적용되고 있다. 그 중 최근에 적용예가 많은 공법으로 DSM(divided shield method)를 들 수 있는데, 이는 Messer Shield 공법에 근간을 두고 있으며, Messer Shield 공법의 장점을 흡수하고 문제점을 개선하여 안정성 및 시공성을 크게 개선한 비개착 특수터널 공법이다. 이 연구에서는 DSM 공법에서 터널 막장면 그라우팅이 터널의 시공성 향상에 미치는 영향을 대형 토조와 수치해석을 수행하여 검토하였다. 실제도로 크기의 1/2인에 해당하는 터널을 모사하기 위한 토조를 제작하여 실험 수행하였다. 또한 MIDAS GTS를 사용하여 수치해석 분석을 통해 DSM모사 토조의 지반 거동과 비교하였다. 터널 표면 침하와 안정성을 단계별 굴착을 통해 측정하였으며, 수치해석과 비교분석하였다. 연구 결과 그라우팅을 통한 막장 안정을 지표의 침하뿐만 아니라 터널 각 부재의 응력은 모두 안정성 범위에 들어가 있었으며, 이를 통하여 DSM 공법의 기술을 개선하고 터널의 안정성 및 시공성 향상을 기대할 수 있는 기초자료를 확보하였다.

플럭스챔버에 의한 N2O와 CH4의 산림에서의 토양배출량 측정연구 (N2O and CH4 Emission from Upland Forest Soils using Chamber Methods)

  • 김득수;김소영
    • 한국대기환경학회지
    • /
    • 제29권6호
    • /
    • pp.789-800
    • /
    • 2013
  • $N_2O$ and $CH_4$, Greenhouse gas emission, Forest soil, Closed chamber technique, Soil uptake $N_2O$ and $CH_4$ are important greenhouse gases (GHG) along with $CO_2$ influencing greatly on climate change. Their soil emission rates are highly affected by bio-geo-chemical processes in C and N through the land-atmosphere interface. The forest ecosystems are generally considered to be net emission for $N_2O$; however, net sinks for $CH_4$ by soil uptake. Soil $N_2O$ and $CH_4$ emissions were measured at Mt. Taewha in Gwangju, Kyeonggi, Korea. Closed chamber technique was used for surface gas emissions from forest soil during period from May to October 2012. Gas emission measurement was conducted mostly on daytime (from 09:00 to 18:00 LST) during field experiment period (total 25 days). The gas samples collected from chamber for $N_2O$ and $CH_4$ were analyzed by gas chromatography. Soil parameters were also measured at the sampling plot. GHG averages emissions during the experimental period were $3.11{\pm}16.26{\mu}g m^{-2}hr^{-1}$ for $N_2O$, $-1.36{\pm}11.3{\mu}gm^{-2}hr^{-1}$ for $CH_4$, respectively. The results indicated that forest soil acted as a source of $N_2O$, while it acted like a sink of $CH_4$ on average. On monthly base, means of $N_2O$ and $CH_4$ flux during May (spring) were $8.38{\pm}48.7{\mu}gm^{-2}hr^{-1}$, and $-3.21{\pm}31.39{\mu}gm^{-2}hr^{-1}$, respectively. During August (summer) both GHG emissions were found to be positive (averages of $2.45{\pm}20.11{\mu}gm^{-2}hr^{-1}$ for $N_2O$ and $1.36{\pm}9.09{\mu}gm^{-2}hr^{-1}$ for $CH_4$); which they were generally released from soil. During September (fall) $N_2O$ and $CH_4$ soil uptakes were observed and their means were $-1.35{\pm}12.78{\mu}gm^{-2}hr^{-1}$ and $-2.56{\pm}11.73{\mu}gm^{-2}hr^{-1}$, respectively. $N_2O$ emission was relatively higher in spring rather than other seasons. This could be due to dry soil condition during spring experimental period. It seems that soil moisture and temperature mostly influence gas production and consumption, and then emission rate in subsoil environment. Other soil parameters like soil pH and chemical composition were also discussed with respect to GHG emissions.

경사입사파 조건에서 유공구조물의 격벽효과에 대한 실험 (Experiments for Side Wall Effects of a Perforated Structure Under Oblique Incident Waves)

  • 이종인;김선우;김경호
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2343-2350
    • /
    • 2013
  • 본 연구에서는 불규칙파를 대상으로 한 경사입사파 내습시 유공구조물 전면에서의 파고분포를 파악하기 위해 평면수조를 이용한 수리실험을 수행하였다. 본 연구는 파랑의 전파특성에 있어 무공구조물과 유공구조물의 차이점과 유사점에 대해 검토하였으며, 특히 유공구조물의 유수실 폭과 유수실내 격벽의 효과에 대해 검토하였다. 제체 전면의 상대파고는 유공구조물인 경우와 무공구조물인 경우에 매우 큰 차이가 있음을 보였으며, 유수실내 격벽은 연파의 발달을 억제시키는 것으로 나타났다.