• Title/Summary/Keyword: Environment chamber

Search Result 845, Processing Time 0.028 seconds

Design and Verification of a Large Reverberation Chamber's Isolation System (대형 잔향실의 방진 구조 설계 및 검증시험)

  • 김홍배;이득웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1066-1074
    • /
    • 2004
  • A vibration isolation system for a large reverberation chamber (1,228 $m^3$ and 1,000 ton) has been installed and verified. The reverberation chamber generates loud noise and induces high level of vibration while performing spacecraft acoustic reliability tests. The isolation system prevents vibration transfer from the chamber to the enclosure buildings. This paper describes design process and commissioning experiments of the system. Design criteria have been derived from rigid body model of the chamber. The stiffness of neoprene pads has been selected by employing finite element analysis of the reverberant chamber and isolation system. A total of 21 neoprene pads have been installed between the chamber and supporting Pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. While 136.9 dB noise is generated in the chamber, absolute transmissibility of the isolation system has been measured. The measured natural frequency of the chamber is 10.2Hz, which is 80% of the predicted value. Overall transmissibility at working frequency range (25∼10.000 Hz) is less than -12.4 dB.

Aerosol Wall Loss in Teflon Film Chambers Filled with Ambient Air

  • Lee Seung-Bok;Bae Gwi-Nam;Moon Kil-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.35-41
    • /
    • 2004
  • Aerosol wall loss is an important factor affecting smog chamber experiments, especially with chambers made of Teflon film. In this work, the aerosol wall loss was investigated in 2.5 and $5.8-m^3$ cubic-shaped Teflon film chambers filled with ambient air. The natural change in the particle size distribution was measured using a scanning mobility particle sizer in a dark environment. The rate of aerosol wall loss was obtained from the deposition theory suggested by Crump and Seinfeld (1981). The measured rates of aero-sol wall loss were In a good agreement with the theoretical and experimental values given by McMurry and Rader (1985), implying that the electrostatic effect enhances particle deposition on the chamber wall. The significance of aerosol wall loss correction was demonstrated with the photochemical reaction experiments using the ambient air.

Wall Contamination of Teflon Bags Used as a Photochemical Reaction Chamber of Ambient Air (실제 대기의 광화학 반응 챔버로 사용되는 테플론 백의 오염도 평가)

  • Lee, Seung-Bok;Bae, Gwi-Nam;Lee, Young-Mee;Moon, Kil-Choo
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.149-161
    • /
    • 2013
  • Experiments on photochemical reactions of purified air alone in an indoor smog chamber were carried out after flushing Teflon bags with purified air for many hours in order to check the level of contamination on the chamber wall. Ozone concentrations were linearly increased from <4 ppb up to about 8 ppb with irradiation time for four hours. Outgassing of NOx from the chamber wall was found to be less than 1 ppb. New ultrafine particles were formed and grown up to about 70 nm during the photochemical reactions, and then total number and mass concentrations of particles were increased from <10 particles/$cm^3$ up to about 4,000 particles/$cm^3$ and $1.3{\mu}g/m^3$, respectively. The wall conditions of these Teflon bags flushed with purified air might not severly affect the chamber experimental results for photochemical reactions of polluted urban ambient air. The difference of gaseous species between two chambers was 2.4 ppb of ozone at most, indicating that the wall cleaning performance of two chambers was nearly similar.

A study on the chemical emission of furnitures using the large chamber method (대형챔버에 의한 생활제품(가구류) 방출오염물질 특성연구)

  • Park, Jae-Hyoung;Knag, Yoon-Kyung;Lee, Yun-Gyu
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.742-747
    • /
    • 2008
  • Formaldehyde(HCHO) and total volatile organic compounds(VOCs) can cause adverse health effects to the building occupants and may contribute to symptoms of 'Sick Building Syndrome'. These chemical contaminants are emitted from furnishings and electronic equipments as well as building materials. The purpose of this study is to measure and analyze VOCs and HCHO emission concentration from furnitures composed of wood materials including various chemicals by the large chamber method. This paper presents experiment results on the emission concentration of TVOCs and HCHO released from furnitures, such as bed, kitchen, sofa and table by a large chamber($24m^3$). The temperature and air humidity in the chamber are controlled to $25{\pm}1{\circ}C$ and $50{\pm}5%$ for this experiment. When the air change rate is $0.5hr^{-1}$, the background concentrations within the large chamber are below $50{\mu}g/m^3$ for TVOC, $5{\mu}g/m^3$ for HCHO and individual VOCs. The study is investigated the characterization of the chemical emission TVOC and HCHO concentrations and unknown VOCs from 6 furnitures.

  • PDF

The Effect of the Formaldehyde Removal of Fore Temperate Ground Cover Plants (4가지 온대성 지피식물의 실내 포름알데이드 제거효과)

  • Ju, Jin-Hee;Bang, Kwang-Ja;Lee, Jin-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.2 s.121
    • /
    • pp.49-54
    • /
    • 2007
  • This research was performed to investigate the effect of formaldehyde removal and confirm the utility of plants as indoor environment improvement systems. The plant materials used in this study were Fatsia japonica, Ardisia japonica, Ardisia pusilla and Davallia mariesii. Plants were placed in an airtight chamber under artificial formaldehyde. The initial formaldehyde concentration in the chamber was $500{\pm}30ppb$, and the conditions of $1,500{\sim}2,000lux$ light, $25{\pm}5^{\circ}C$ temperature and $80{\sim}90%$ humidity were maintained. Each chamber was treated as no plant, plant-only and Plant+soil. The total leaf number for Davallia mariesii, Ardisia japonica, Ardisia pusilla, and Fatsia japonica was 40.8, 48.6, 62.3, and 11.8 respectively. The total leaf space n of those plant materials were $2,385cm^2,\;1,252cm^2,\;2,468cm^2\;and\;1,262cm^2$ respectively. The formaldehyde concentration was reduced to $80{\sim}90%$ of the initial concentration in plant-only and Plant+Soil treatment chamber of all species in 12 hours. In the plant-only chamber, Fatsia japonica had removed formaldehyde density by 95% after 12 hours while Ardisia japonica had removed 90%. In the case of Ardisia pusilla, the early removal rate was higher in the plant-only treatment chamber than the Plant+Soil treatment chamber. The formaldehyde removal rate of Davallia mariesii was 98% after 12 hours. In the Plant+Soil treatment chamber, the amount of removal of formaldehyde per time of Davallia mariesii, Ardisia japonica, Ardisia pusilla, and Fatsia japonica was 20.42ppb/hr, 16.28ppb/hr, 2.5.42ppb/hr, 10.28ppb/hr respectively. In the plant-only, That was 22.50ppb/hr, 20.97ppb/hr, 20.83ppb/hr, 20.97ppb/hr respectively.

STUDY ON THE THERMAL-FLUID ANALYSIS OF CRYOGENIC CHAMBER FOR COLD CLIMATE TEST OF LARGE WIND TURBINE PARTS (대형 풍력발전기 부품의 극한 환경 시험을 위한 극저온 챔버의 열유동 해석에 대한 연구)

  • Kim, M.K.;Kang, Y.H.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.8-14
    • /
    • 2015
  • More and more, spaces are decreasing which satisfy multiple requirements for wind power plants. However, areas which have excellent wind resources and are free to civil complaints occupy a large space, although they are exposed to the cryogenic environment. This study conducted a thermal-fluid analysis of a cryogenic chamber for testing large wind turbine parts exposed to the cryogenic environment. The position of supply air is placed to the upper area to compare each cooling performance for each location of various outlets in mixing ventilated conditions. The study carried out CFD analysis for the chamber both with and without a test object. For the cases without the test object, the air temperature of the upper supply and down extract type chamber was cooled faster by 5-100% than the others. However, for the cases with the test object, the object temperature of upper supply and center extract on the opposite side type chamber was cooled faster by 33-132% than the others. The cooling performance by the air inside the chamber and the test object did not show the same pattern, which implicates the need to consider the cooling performance by not only the air but also the test object in the large cryogenic chamber design for testing large parts.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Converter (진동수주형 파력발전장치 공기실의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted OWC chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. The numerical scheme employed a hybrid Green integral equation which adopts the Rankine Green function inside chamber to take account of fluctuating air pressure, while it uses the Kelvin Green function in outer domain. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF

A Study on Predication model for TVOC Emissions of Finishing material in Apartment House (공동주택 건축내장재의 TVOC 방출량에 관한 예측모델 연구)

  • Kim, Hyung-Soo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.55-62
    • /
    • 2002
  • While cognition about an environment pollution becomes important recently, the intense pollution measures about an indoor air environment is required. In the case of building indoor environment, over 80% of modem people is living in building and these days an interest of building interior materials which becomes a reason for indoor environmental pollution in public house, office, is increasing. An experimental measurement method of this study is as follows. (1) American EPA TO-17, ASTMD5116-97, measurement method in VOCs experiment of Japanese closet industrial association (2) 2.4-DNPH cartridge method in HCHO experiment, based on American EPA TO-11 and measurement method of Japanese closet industrial association (3) standard compound is analyzed by using HPLC after solvent extraction process (4) paint and furniture are selected as measurement objects (5) we also made small chamber to grasp an emission characteristic of HCHO and VOCs and to get an environment-amicable forecast model through it, then we developed the model which can forecast emission rate by chamber experiment.

A Preliminary PAM Measurement of Ambient Air at Gosan, Jeju to Study the Secondary Aerosol Forming Potential (이차 에어러솔 생성 잠재력 평가를 위한 Potential Aerosol Mass (PAM) 챔버의 제주도 고산 대기분석 적용)

  • Kang, Eun-Ha;Brune, William H.;Kim, Sang-Woo;Yoon, Soon-Chang;Jung, Mu-Hyun;Lee, Mee-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.534-544
    • /
    • 2011
  • The secondary aerosol forming potential of ambient air was first measured with the Potential Aerosol Mass(PAM) chamber at Gosan supersite on Jeju island from October 22 to November 5, 2010. PAM chamber is a small flowthrough photo-oxidation chamber with extremely high OH and $O_3$ levels. The OH exposure in the PAM chamber was $(2{\pm}0.4){\times}10^{11}{\sim}(6{\pm}1.2){\times}10^{11}$ molecules $cm^{-3}$ s and was similar to 2 to 5 days of aging in the atmosphere. By periodically turning on and off UV lamps in the PAM chamber, ambient aerosol and newly formed aerosol (e.g. called as PAM aerosol) was alternately measured. Aerosol number and mass concentration in the range of 10~487 nm in diameter was measured by SMPS 3034. With UV lamps on, the nucleation mode particles smaller than 50 nm in diameters were formed. Their number concentration was greater than 105 $cm^{-3}$, leading to increase in aerosol mass by 0~8 ${\mu}gm^{-3}$. The variations of PAM and ambient aerosols were greatly dependent on characteristics of air masses such as precursor concentrations and degree of aging. This preliminary results suggests that PAM chamber is useful to assess the aerosol formation potential of air mass and its impact on the air quality. The further analysis of data with gaseous and particulate measurements will be done.

Comparison of the Particulate Matter Removal Capacity of 11 Herbaceous Landscape Plants

  • Kwon, Kei-Jung;Odsuren, Uuriintuya;Kim, Sang-Yong;Yang, Jong-Cheol;Park, Bong-Ju
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.3
    • /
    • pp.267-275
    • /
    • 2021
  • Background and objective: Particulate matter (PM) has a fatal effect on health. There have been many studies on the use of plants such as trees and shrubs as eco-friendly and sustainable biofilter for the removal of PM. In forming more green space, ground cover plants play an important role in multi-layered planting. This study was conducted to investigate the ability of plants to reduce PM, targeting Korean native ground cover plants with high availability in urban green spaces. Methods: For 4 species of Asteraceae, 4 species of Liliaceae, and 3 species of Rosaceae, one species of plants at a time were placed in an acrylic chamber (800 × 800 × 1000 mm, L × W × H) modeling an indoor space. After the injection of PM, the amount of PM remaining in the chamber over time was investigated. Results: For all three types of PM (PM10, PM2.5, PM1), significant difference occurred in the amount of PM remaining between plant species after 1 hour in the Liliaceae chamber, 3 hours in the Asteraceae chamber, and 5 hours in the Rosaceae chamber. With Liliaceae, the leaf area and the amount of PM remaining in the chamber showed a negative (-) correlation. With the Asteraceae and Rosaceae, there was a weak negative correlation between the leaf area and the amount of PM remaining in the chamber. Conclusion: When using ground cover plants as a biofilter to remove PM, it is considered effective to select a species with a large total leaf area, especially for Liliaceae.