DOI QR코드

DOI QR Code

Comparison of the Particulate Matter Removal Capacity of 11 Herbaceous Landscape Plants

  • Kwon, Kei-Jung (Department of Horticultural Science, Chungbuk National University) ;
  • Odsuren, Uuriintuya (Major in Horticulture, Graduate School, Chungbuk National University) ;
  • Kim, Sang-Yong (Division of Plant Resources, Korea National Arboretum) ;
  • Yang, Jong-Cheol (Division of Plant Resources, Korea National Arboretum) ;
  • Park, Bong-Ju (Department of Horticultural Science, Chungbuk National University)
  • Received : 2021.04.19
  • Accepted : 2021.05.25
  • Published : 2021.06.30

Abstract

Background and objective: Particulate matter (PM) has a fatal effect on health. There have been many studies on the use of plants such as trees and shrubs as eco-friendly and sustainable biofilter for the removal of PM. In forming more green space, ground cover plants play an important role in multi-layered planting. This study was conducted to investigate the ability of plants to reduce PM, targeting Korean native ground cover plants with high availability in urban green spaces. Methods: For 4 species of Asteraceae, 4 species of Liliaceae, and 3 species of Rosaceae, one species of plants at a time were placed in an acrylic chamber (800 × 800 × 1000 mm, L × W × H) modeling an indoor space. After the injection of PM, the amount of PM remaining in the chamber over time was investigated. Results: For all three types of PM (PM10, PM2.5, PM1), significant difference occurred in the amount of PM remaining between plant species after 1 hour in the Liliaceae chamber, 3 hours in the Asteraceae chamber, and 5 hours in the Rosaceae chamber. With Liliaceae, the leaf area and the amount of PM remaining in the chamber showed a negative (-) correlation. With the Asteraceae and Rosaceae, there was a weak negative correlation between the leaf area and the amount of PM remaining in the chamber. Conclusion: When using ground cover plants as a biofilter to remove PM, it is considered effective to select a species with a large total leaf area, especially for Liliaceae.

Keywords

Acknowledgement

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. 2019155B10-2021-001) provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Bang, K.J. 2009. Ground cover plants(pp.12). Seoul, Korea: Landscape Architecture Publishing Co., LTD.
  2. Beckett, K.P., P.H. Freer-Smith, and G.Taylor. 1998. Urban woodlands: their role in reducing the effects of particulate pollution. Environ. Pollut. 99(3):347-360. https://doi.org/10.1016/S0269-7491(98)00016-5
  3. Beckett, K.P., P.H. Freer-Smith, and G.Taylor. 2000. Particulate pollution capture by urban trees: effect of species and windspeed. Glob. Change Biol. 6(8):995-1003. https://doi.org/10.1046/j.1365-2486.2000.00376.x
  4. Chen, X., Z. Zhou, M. Teng, P. Wang, and L. Zhou. 2015. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits. Arch. Biol. Sci. 67(4):1257-1267. https://doi.org/10.2298/ABS150325102C
  5. Cheng, H.C., S.Y. Woo, S.H. Lee, M.J. Kwak, and K.N. Kim. 2013. Physiological and biochemical responses of Sedum kamtschaticum and Hosta longipes to ozone stress. Korean J. Hortic. Sci. Technol. 31(1):1-7. https://doi.org/10.7235/hort.2013.12007
  6. Cho, D.G. 2019. Prioritization of species selection criteria for urban fine dust reduction planting. Korean J. Environ. Ecol. 33(4):472-480. https://doi.org/10.13047/KJEE.2019.33.4.472
  7. Cho, S.B., H.S. Lee, J.K. Lee, S.H. Park, H.D. Kim, M.J. Kwak, K.A. Lee, Y.J. Lim, and S.Y. Woo. 2020. Air pollution tolerance index (APTI) of main street trees following ozone exposure. J. Korean Soc. For. Sci. 109(1):50-61. https://doi.org/10.14578/jkfs.2020.109.1.50
  8. Jalava, P.I., Q. Wang, K. Kuuspalo, J. Ruusunen, L. Hao, D. Fang, O. Vaisanen, A. Ruuskanen, O. Sippula, M.S. Happo, O. Uski, S. Kasurinen, T. Torvela, H. Koponen, K.E.J. Lehtinen, M. Komppula, C. Gu, J. Jokiniemi, and M. R. Hirvonen. 2015. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation. Atmos. Environ. 120:427-437. https://doi.org/10.1016/j.atmosenv.2015.08.089
  9. Jang, H.T. 1999. A case study on the use of native plants by landscape type. Landscaping Tree. 51(7):28-33.
  10. Kalkman, C. 2004. Rosaceae(pp.343-386). In The families and genera of vascular plants. Berlin, Germany: Springer. https://doi.org/10.1007/978-3-662-07257-8
  11. Kang, T.H., and H.X. Zhao. 2013. Assessment of roof-rainwater utilization system and drought resistance of ground cover plants. J. Korean Inst. Landsc. Archit. 41(5):1-8. https://doi.org/10.9715/KILA.2013.41.5.001
  12. Kim, J.S., and J.H. Kim. 2018. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Bot. J. Linn. Soc. 187(4):579-5936. https://doi.org/10.1093/botlinnean/boy031
  13. Kim, M.K. 2011. Multi-layer planting model based on analysis of natural plant structure. Doctoral Dissertation. Korea University, Seoul, Korea.
  14. Kim, S.C. 2006. Biological activities of Rosa family plants and antihepatotoxic effect of Rosa rugosa, Doctoral Dissertation, Yosu National University, Yosu, Korea.
  15. Kwon, K.J., O. Urrintuya, S.Y. Kim, J.C. Yang, J.W. Sung, and B.J. Park. 2020. Removal potential of particulate matter of 12 woody plant species for landscape planting. J. People Plants Environ. 23(6):647-654. https://doi.org/10.11628/ksppe.2020.23.6.647
  16. Lee, S.T. 2007. Sorbaria. In The Genera of Vascular Plants of Korea(pp.540-541). Flora of Korean Editorial Committee (Ed.). Seoul, Korea: Academy Publishing Co.
  17. Lee, S.Y., W.T. Kim, J.H. Ju, and Y.H. Yoon. 2013. Effect of calcium chloride concentration on roadside ground cover plant growth. J. Korean Inst. Landsc. Archit. 41(4):17-23. https://doi.org/10.9715/KILA.2013.41.4.017
  18. Lohr, V.I. and C.H. Pearson-Mims. 1996. Particulate matter accumulation on horizontal surfaces in interiors: Influence of foliage plants. Atmos. Environ. 30(14):2565-2568. https://doi.org/10.1016/1352-2310(95)00465-3
  19. Perini, K., M. Ottele, S. Giulini, A. Magliocco, and E. Roccotiello. 2017. Quantification of fine dust deposition on different plant species in a vertical greening system. Ecol. Eng. 100:268-276. https://doi.org/10.1016/j.ecoleng.2016.12.032
  20. Potter D., T. Eriksson, R.C. Evans, S. Oh, J.E.E. Smedmark, D.R. Morgan, M. Kerr, K. R. Robertson, M. Arsenault, T.A. Dickinson and C.S. Campbell. 2007. Phylogeny and classification of Rosaceae. Plant Syst. Evol. 266:5-43. https://doi.org/10.1007/s00606-007-0539-9
  21. Przybysz, A., A. Saebo, H.M. Hanslin, and S.W. Gawronski. 2014. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 481(15):360-369. https://doi.org/10.1016/j.scitotenv.2014.02.072
  22. Querol, X., A. Alastuey, C.R. Ruiz, B. Artinano, H.C. Hansson, R.M. Harrison, E. Buringh, H.M. ten Brink, M. Lutz, P. Bruckmann, P. Straehl, and J. Schneider. 2004. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38(38):6547- 6555. https://doi.org/10.1016/j.atmosenv.2004.08.037
  23. Sillars-Powell, L., M.J. Tallis, and M. Fowler. 2020. Road verge vegetation and the capture of particulate matter air pollution. Environ. 7(10):93. https://doi.org/10.3390/environments7100093
  24. Saebo, A., R. Popek, B. Nawrot, H.M. Hanslin, H. Gawronska, and S.W. Gawronski. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 427-428:347-354. https://doi.org/10.1016/j.scitotenv.2012.03.084
  25. Son, D.J, K.J. Kim, N.R. Jeong, H.G. Yun, S.W. Han, J.H. Kim, G.R. Do, S.H. Lee, and C.C. Shagol, 2019. The impact of the morphological characteristics of leaves on particulate matter removal efficiency of plants. J. People Plants Environ. 22(6):551-561. https://doi.org/10.11628/ksppe.2019.22.6.551
  26. Speak, A.F., J.J. Rothwell, S.J. Lindley, and C.L. Smith. 2012. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 61:283-293. https://doi.org/10.1016/j.atmosenv.2012.07.043
  27. Sugimoto, N., A. Shimizu, I. Matsui, and M. Nishikawa. 2016. A method for estimating the fraction of mineral dust in particulate matter using PM2.5-to-PM10 ratios. Particuology. 28:114-120. https://doi.org/10.1016/j.partic.2015.09.005
  28. Suh, J.K. 2007. The collection and propagation technique development of certain useful native floral plants. J. Korean Soc. People Plants Environ. 10(3):84-89
  29. Turkyilmaz, A., H. Sevik, M. Cetin, and E.A.A. Saleh. 2018. Changes in heavy metal accumulation depending of traffic density in some landscape plants. Pol. J. Environ. Stud. 27(5):2277-2284. https://doi.org/10.15244/pjoes/78620
  30. Weber, F., I. Kowarik, and I. Saumel. 2014. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environ. Pollut. 186:234-240. https:// doi.org/10.1016/j.envpol.2013.12.011
  31. Woo, J.H., S.L. Shin, and C.H. Lee. 2010. Antioxidant effects of ethanol extracts from flower species of compositae plant. J. Korean Soc. Food Sci. Nutr. 39(2): 159-164. https://doi.org/10.3746/jkfn.2010.39.2.159
  32. Wu, D., X. Yu, M. Lai, J. Feng, X. Dong, W. Peng, S. Su, X. Zhang, L. Wan, D.F. Jacobs, and S. Zeng. 2021. Diversified effects of co-planting landscape plants on heavy metals pollution remediation in urban soil amended with sewage sludge. J. Hazard. Mater. 403:123855. https://doi.org/10.1016/j.jhazmat.2020.123855
  33. Yan, J., L. Lin, W. Zhou, L. Han, and K. Ma. 2016. Quantifying the characteristics of particulate matters captured by urban plants using an automatic approach. J. Environ. Sci. 39:259-267. https://doi.org/10.1016/j.jes.2015.11.014
  34. Yang, M., Y.M. Guo, M.S. Bloom, S.C. Dharmagee, L.Morawska, J. Heinrich, B. Jalaludin, I. Markevychd, L.D. Knibbsf, S. Lin, S.H. Lan, P. Jalava, M. Komppula, M. Roponen, M.R. Hirvonen, Q.H. Guan, Z.M. Liang, H.Y. Yu, L.W. Hu, B.Y. Yang, X.W. Zeng, G.H. Dong. 2020. Is PM1 similar to PM2.5? A new insight into the association of PM1 and PM2.5 with children's lung function. Environ. Int. 145:106092. https://doi.org/10.1016/j.envint.2020.106092