• Title/Summary/Keyword: Environment Test Equipment

Search Result 454, Processing Time 0.041 seconds

Development of the MEP Integration Test Environment for Surion (수리온 임무탑재체계의 통합시험 환경개발)

  • Kim, Yoo-Kyung;Kim, Myung-Chin;Choi, Won-Woo;Oh, Woo-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.666-673
    • /
    • 2011
  • To perform effective integration test of avionics equipments, the importance of a setup for integration test environment has been increasing in recently developed aircraft. Especially, the development of integration test equipment is necessary for minimizing the development period and reliability of integration test. This paper treats the model development for optimal working of integration test after analyzing the characteristics of each MEP equipments for Surion(KUH). Models, whose main role is troubleshooting of equipment and simulation for missing equipments, consists of dynamic, behavior, and ICD models depending on the dynamic characteristics. Software test for both unit level and system level are performed to verify the model reliability. By conducting integration test using SIL, it is confirmed that the developed models are suitable for integration function test of the MEP system.

Vibration Characteristics Analysis of the Communication Satellite Transponder Equipment (통신위성 중계기 부품의 진동특성 해석)

  • 김현수;이명규;박종흥;김성종;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.374-379
    • /
    • 2001
  • The satellite electronic equipment is exposed to high level random vibration environment during the launch of spacecraft. The random vibration can cause damage of electronic equipment. Thus very careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of transponder equipments of communication satellite. For the structural integrity of the communication satellite transponder equipment under qualification level random vibration, Finite Element analysis was carried out using the commercial code, MSC/Nastran and ANSYS and stress levels are presented. In order to validate the femodel, modal test was also performed and compared with numerical results.

  • PDF

SCADA System for Semiconductor Equipment Condition Monitoring (반도체 장비상태 모니터링을 위한 SCADA 시스템 구현)

  • Lee, Youn Ji;Yun, Hak Jae;Park, Hyoeun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.92-95
    • /
    • 2019
  • Automation control and the data for control of industrial equipment for the diagnosis and prediction is a key to success in the 4th industrial revolution. It increases process efficiency and productivity through data collection, realtime monitoring, and the data analysis. However, university and research environment are still suffering from logging the data in manual way, and we occasionally loss the equipment data logging due to the lack of automatic data logging system. State variable presents the current condition of the equipment operation which is closely related to process result, and it is valuable to monitor and analyze the data for the equipment health monitoring. In this paper, we demonstrate the collection of equipment state variable data via programmable logic controller (PLC) and the visualization of the collected data over the Web access supervisory control and data acquisition (SCADA). Test vehicle for the implementation of the suggested SCADA system is a relay switched physical vapor deposition system in the university environment.

A Study on the Operational Environment of Signalling System (신호시스템 운용환경에 관한 연구)

  • 정의진;이종우;황종규
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.164-171
    • /
    • 2000
  • To determine operational requirement, the environmental condition for an equipment must be investigated, and to certify equipment's normalized operation, appropriate test must be carried out under the considered environmental condition. The actual environmental conditions to which equipment is likely to be exposed are normally complex and will comprise a number of environmental factors and corresponding parameters, When defining the environmental conditions for a certain application it is, therefore, necessary to list the factors involved and select the appropriate severity. For the preparation to determine operational requirement, environmental condition of equipment is investigated. The environmental condition is structured in two separate such as requirements, guidance and test specifications. For the first step, environmental requirements are considered

  • PDF

CFD Analysis of Underwater Standard Penetration Test Equipment (해저 표준관입시험 장비의 밀폐형 항타부 CFD 해석)

  • Ko, Jin Hwan;Jang, In Sung;Kim, Woo Tae;Kwon, O Soon;Baek, Won Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.33-38
    • /
    • 2012
  • In our study, a closed-type penetration unit for standard penetration test (SPT) equipment was developed in order to operate in an underwater environment. This type causes energy dissipation, mainly due to the small gap between an airtight case and moving hammer. The dissipation was estimated through a CFD analysis. The computed dissipated energy was less than 1.2% compared to the potential energy of the hammer with the given gap. Subsequently, the impact energy of the underwater SPT equipment was within 1.2% of that for the SPT equipment on land.

A Study on the Determination Vibration criteria for High Technology Facilities using FRF - Impact Test- (주파수 응답함수를 이용한 고정밀장비의 진동 허용규제치 결정기법에 관한 연구)

  • 이홍기;박해동;김두훈;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.377-385
    • /
    • 1996
  • In the case of a precision equipment, it requires a vibration free environment to provide its proper function. Especially, lithography and inspection devices, which have sub-nanometer class high accuracy and resolution, have come to necessity for producing more improved giga class semiconductor wafers. This high technology equipments require very strict environmental vibration standard in proportion to the accuracy of the manufacturing, inspecting devices. The vibration criteria are usually obtained either by the real vibration exciting test on the equipment or by the analytical calculation. the former is accurate but requires a great deal of time and efforts while the latter lacks reliability. this paper proposes a new method to solve this problem at a time. the permissible vibration level to a precision equipment can be easily obtained by analyzing a process of Frequency Response Function. This paper also demonstrates its effectiveness by applying the proposed method to finding the vibration criteria of a Computer Hard Disk Drive by impact Test.

  • PDF

Analysis and Comparison of Flow Rate Measurements Using Various Discharge Measuring Instrument and ADCP (다양한 유량 측정기기와 ADCP를 이용한 유량 비교 분석)

  • Ji, Ju-Yeon;Park, Seung-Yong;Lee, Gwang-Woo;Park, Gyeong-Min;Hwang, Soon-Hong;Kim, Dong-Ho;Lee, Young-Joon
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.251-257
    • /
    • 2013
  • Discharge data examine the process of hydrologic cycle and used significantly in water resource planning and irrigation and flood control planning. It makes high quality discharge data, they carry out research on standard and method of discharge measurement, and equipment improvement. Now various flow meters are utilized to make discharge data in Korea. However, accuracy of equipment and exprerimental research data from measurement are not enough. ADCP(Acoustic Doppler Current Profiler) have been introduced and utilized for flow measurements since the end of 1980's. ADCP flow method is a formal method for flow measurement can easily applyd to relatively large rivers gradually recognized. This equipment can measure the non-contact three-dimensional velocity and water depth data very quickly and efficiently. Also, spatial and temporal resolution of the data is more accurate than any other flow measurement methods which measure flow rate by velocity - area measurement method. In this paper, the velocity is measured using various flow meter and verified the effectiveness by applying from the ADCP in Geum-river. Various flow meters which are med for discharge measurements are VALEPORT002, FLOW TRACKER, PRICE AA and ADCP. The average of five times flow measurement result by ADCP was $10.412m^3/s$, with a standard deviation of 0.68. The repeat test by ADCP and comparison between ADCP and other flow devices to verify the most import factor, flow measurement accuracy. In the result, repeat test of the ADCP showed similar values, flow values were similar to other velocity device results and the average error is 7.7%.

The Flight Test of the KSLV-I Electronic Systems Using a Light Airplane (경항공기를 이용한 KSLV-I 전자탑재장비 비행시험)

  • Ji, Ki-Man;Lee, Soo-Jin;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.142-150
    • /
    • 2008
  • In order to ensure the individual and mutual performances among the telemetry system, tracking system, flight termination system, GPS, and inertial navigation & guidance system which are installed in the KSLV-I 2nd stage and ground equipment of the Naro space center, flight test using a light airplane is required. Since the high degree of test efficiency is fulfilled through the minute plan and analysis about selection of the equipment which are applicable to the test, harness, operation strategy, and antenna installation. KSLV-I communication environment and flight profile should be precisely taken into account during the flight test. In this document, overall aspect of the KSLV-I 2nd stage equipment specification, a rack for the installation, harness, the airplane specification, and flight route which are required for the effective flight test are presented.

  • PDF

The Relationship between scuba diving participant's selective attribute, emotional response, and empirical value

  • Lee, Yoo-Chan;Jung, Sang-Ok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.84-91
    • /
    • 2021
  • The purpose of this study is to investigate the structural relationship between resort selection attributes, emotional responses, and empirical values of scuba diving participants. The general population who enjoys scuba diving in Korea was selected as the population. Using the convenience sampling method, 553 of the 600 questionnaire samples were extracted as the final valid sample. For data processing, frequency analysis, exploratory factor analysis, and Cronbach's α test were performed using SPSS 23, and confirmatory factor analysis and structural equation model analysis were performed with AMOS 18. The results are as follows: First, among the sub-factors of selection attributes, equipment, facility environment, and diving point showed a positive effect on emotional response, but staff service did not have any significant effect. Second, the emotional response positively affected by the selection attribute showed a positive effect on all factors of service excellence, consumer utility, fun value, and aesthetic value of empirical value. Therefore, scuba diving resort managers must recognize the importance of equipment, facility environment, and diving point among these selection attributes of customers. And to satisfy the customer needs the resort must accurately identify the needs for diving equipment, facility environment and diving point. Various methods for this should be explored through the needs of the identified customers, and efforts should be made to provide safe equipment, comfortable facilities, and various diving points.

Development of Test Equipment for Complex Underwater Environments (수중복합 환경시험장비의 개발에 관한 연구)

  • Kim, Jong Cheol;Lee, Gi Chun;Choi, Byung Oh;Jung, Dong Soo;Lee, Choong Sung;Jeon, Jun Wan;Lee, Jae Ho;Hwang, Kyung Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.871-877
    • /
    • 2015
  • Deep-sea equipment such as underwater robots and unmanned submersible vehicles, include various machine components and sensors, and it is important that their reliabilities be tested before use in the fields. This is necessary because they are affected by complex extreme-environment conditions, such as high pressures, extreme temperatures, and tidal forces that are present in the deep sea. We require test equipment that can conduct empirical tests in conditions that mimic these complex oceanic environments. In this study, we propose specifications that should be met, and a design plan for the primary components, which should limit their use to a maximum water pressure of 2.0 MPa, water temperature of $5{\sim}60^{\circ}C$, and a maximum flow velocity of 2 m/s. in work-in type underwater combined environment test equipment and. We present test system development procedures to verify the reliability of products and systems used in deep-sea environments.