• Title/Summary/Keyword: Envelope Protein

Search Result 111, Processing Time 0.025 seconds

Calcium-induced Human Keratinocytes(HaCaT) Differentiation Requires Protein Kinase B Activation in Phosphatidylinositol 3-Kinase-dependent Manner

  • Piao, Longzhen;Shin, Sang-Hee;Yang, Keum-Jin;Park, Ji-Soo;Shin, Eul-Soon;Li, Yu-Wen;Park, Kyung-Ah;Byun, Hee-Sun;Won, Min-Ho;Lee, Choong-Jae;Hur, Gang-Min;Seok, Jeong-Ho;Kim, Ju-Duck
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2006
  • The survival and growth of epithelial cells depends on adhesion to the extracellular matrix. An adhesion signal may regulate the initiation of differentiation, since epidermal keratinocytes differentiate as they leave the basement membrane. A metabolically dead cornified cell envelope is the end point of epidermal differentiation so that this process may be viewed as a specialized form of programmed cell death. In order to investigate the precise cellular signaling events loading to terminal differentiation of keratinocytes, we have utilized HaCaT cells to monitor the biological consequences of $Ca^{2+}$ stimulation and numerous downstream signaling pathways, including activation of the extracellular signal-regulated protein kinase(ERK) pathway and activation of phosphatidylinositol 3-kinase(PI3K). The results presented in this study show that $Ca^{2+}$ function as potent agents for the differentiation of HaCaT keratinocytes, and this differentiation depends or the activation of ERK, Protein kinase B(PKB) and p70 ribosomal protein S6 kinase(p70S6K). Finally, the results show that the expression of Activator protein 1(AP-1; c-Jun and c-Fos) increased following $Ca^{2+}$-mediated differentiation of HaCaT cells, suggesting that ERK-mediated AP-1 expression is critical for initiating the terminal differentiation of keratinocytes.

Retrovirus Vector-Mediated Inductional Expression of the Human Lactadherin Gene in Mouse Mammary Epithelial Cells (Mouse Mammary Epithelial Cell에서 Retrovirus Vector를 이용한 Human Lactadherin 유전자의 유도적 발현)

  • 권모선;구본철;정병현;염행철;박창식;김태완
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • Lactadherin (formerly known as BA46), a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and breast carcinomas and may prevent symptomatic rotavirus infections. In this study, under the control of tissue specific and hormonal inducible mouse whey acidic protein (WAP) promote., the expression pattern of lactadherin (Ltd) in lactogenic hormone-dependent mouse mammary epithelial cell line HC11 were tested. pLNWLtd construct containing 2.4 kilobases of the WAP promoter and 1.5 kilobases of human lactadherin gene was stably transfered into HC11 cells using retroviral vector system. Integration and expression level of the transgene was estimated using PCR and RT-PCR, respectively. Prominent induction of Ltd gene under the WAP promoter was accomplished in the presence of insulin, hydrocortisone and prolactin. Compared to the control (cells cultured with insulin alone), however we observed that the WAP promoter was leaky. These data indicate that luther studies are needed in finding an appropriate promoter other than WAP promoter because of its leakiness.

Human Immunodeficiency Virus-Infected T Cells Are Selectively Killed by Monoclonal Anti-gp120 Antibody Coupled to Pokeweed Antiviral Protein (섬자리공 유래 항바이러스 단백질과 항체 복합체를 이용한 HIV-1 감염세포의 선택적 제거)

  • Kang, Mi-Ran;Kim, Yoon-Kyu;Hong, Hyo-Jeong;Cho, Myung-Hwan;Shin, Hyung-Sik;Kim, Sun-Young
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.4
    • /
    • pp.383-391
    • /
    • 1998
  • A murine monoclonal antibody (mAb) specific for the envelope glycoprotein gp120 of human immunodeficiency virus type-I (HIV -1) was chemically coupled to pokeweed antiviral protein (PAP) from Phytolacca americana. The immunotoxin was purified by FPLC using S200 colum. The purified immunotoxin efficiently bound to HIV-infected T cells as evidenced by fluorescenceactivated cell sorter analysis. The immunotoxin selectively killed human T lymphoid lines infected with $HIV-1_{IIIB}$ at less than 250 pM of the immunotoxin cells, while PAP or mAb alone did not have any significant effect on infected cells. The uninfected control T cell lines were not affected. Human cells infected with HIV-2 or other HIV-1 strains were not killed, suggesting that the killing depends completely on the antibody used for coupling. These in vitro results suggest that the PAP-mAb conjugate may be used to selectively remove cells expressing viral antigens from individuals infected with HIV.

  • PDF

Characterization of Bacillus thuringiensis Having Insecticidal Effects Against Larvae of Musca domestica

  • Oh, Se-Teak;Kim, Jin-Kyu;Yang, Si-Yong;Song, Min-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1057-1062
    • /
    • 2004
  • The entomopathogenic bacterium Bacillus thuringiensis is the most widely used biopesticide. Insecticidal proteins, coded by genes located in plasmids, form typical parasporal, crystalline inclusions during sporulation. We isolated a Bacillus thuringiensis strain having insecticidal activity against larvae of the house fly (M. domestica) from the soils at a pig farm in Korea, and named it Bacillus thuringiensis SM. The culture filtrate from Bacillus thuringiensis SM showed strong lethality (83.3%) against M. domestica larvae. The parasporal crystal is enclosed within the spores' outermost envelope, as determined by transmission electron microscopy, and exhibited a bipyramidal form. The crystal proteins of strain SM consisted of five proteins with molecular weights of approximately ~130, ~80, ~68, ~42, and ~27 kDa on a 10% SDS-PAGE (major band, a size characteristic of Cry protein). Examination of antibiotic resistance revealed that the strain SM showed multiple resistant. The strain SM had at least three different plasmids with sizes of 6.6, 9.3, and 54 kb. Polymerase chain reactions (PCRs) revealed the presence of cry1, cry4A2, and cry11A1 genes in the strain SM. The cry1 gene profile of the strain SM appeared in the three respective products of 487 bp [cry1A(c)], 414 bp [cry1D], and 238 bp [cry1A(b)]. However, the strain SM has not shown the cry4A2 md cry11A1 genes. In in vivo toxicity assays, the strain SM showed high toxicity on fly larvae (M. domestic) [with $LC_{50}$ of 4.2 mg/ml, $LC_{90}$ of 8.2 mg/ml].

Mucosal Immune Response and Adjuvant Activity of Genetically Fused Escherichia coli Heat-Labile Toxin B Subunit

  • Lee, Yung-Gi;Kang, Hyung-Sik;Lee, Cheong-Ho;Paik, Sang-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.490-497
    • /
    • 2004
  • Although the E. coli heat-labile enterotoxin B subunit (LTB) is known to be a potent mucosal adjuvant towards co-administrated unrelated antigens and immunoregulator in T-helper 1-type-mediated autoimmune diseases, a more efficient and useful LTB is still required for prospective vaccine adjuvants. To determine whether a novel chimeric LTB subunit would produce an enhanced mucosal adjuvant activity and immune response, a number of LTB subunits were genetically fused with chimeric proteins using the epitope genes of the envelope glycoprotein E2 (gp51-54) from the classical swine fever virus (CSFV). It was found that the total serum immunoglobulin (Ig) levels of BALB/c mice orally immunized with chimeric proteins containing an N-terminal linked LTB subunit (LE1, LE2, and LE3) were higher than those of mice immunized with LTB, E2 epitope, and chimeric proteins that contained a C-terminal linked LTB subunit. In particular, immunization with LE1 markedly increased both the total serum Ig and fecal IgA level compared to immunization with LTB or the E2 epitope. Accordingly, the current results demonstrated that the LTB subunit in a chimeric protein exhibited a strong mucosal adjuvant effect as a carrier molecule, while the chimeric protein containing the LTB subunit stimulated the mucosal immune system by mediating the induction of antigen-specific serum Ig and mucosal IgA. Consequently, an LE1-mediated mucosal response may contribute to the development of effective antidiarrhea vaccine adjuvants.

VSV-G Viral Envelope Glycoprotein Prepared from Pichia pastoris Enhances Transfection of DNA into Animal Cells

  • Liu, Xin;Dong, Ying;Wang, Jingquan;Li, Long;Zhong, Zhenmin;Li, Yun-Pan;Chen, Shao-Jun;Fu, Yu-Cai;Xu, Wen-Can;Wei, Chi-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1098-1105
    • /
    • 2017
  • Vesicular stomatitis virus G glycoprotein (VSV-G) has been widely used for pseudotyping retroviral, lentiviral, and artificial viral vectors. The objective of this study was to establish a potential approach for large-scale production of VSV-G. To this end, VSV-G was cloned with an N-terminal His-tag into Pichia pastoris expression vector pPIC3.5K. Three clones ($Mut^s$) containing the VSV-G expression cassette were identified by PCR. All clones proliferated normally in expansion medium, whereas the proliferation was reduced significantly under induction conditions. VSV-G protein was detected in cell lysates by western blot analysis, and the highest expression level was observed at 96 h post induction. VSV-G could also be obtained from the condition medium of yeast protoplasts. Furthermore, VSV-G could be incorporated into Ad293 cells and was able to induce cell fusion, leading to the transfer of cytoplasmic protein. Finally, VSV-G-mediated DNA transfection was assayed by flow cytometry and luciferase measurement. Incubation of VSV-G lysate with the pGL3-control DNA complex increased the luciferase activity in Ad293 and HeLa cells by about 3-fold. Likewise, incubation of VSV-G lysate with the pCMV-DsRed DNA complex improved the transfection efficiency into Ad293 by 10% and into HeLa cells by about 1-fold. In conclusion, these results demonstrate that VSV-G could be produced from P. pastoris with biofunctionalities, demonstrating that large-scale production of the viral glycoprotein is feasible.

Effect of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Skin Hydration and Barrier Function in Human Epidermal Keratinocytes

  • Woo, Seon Wook;Rhim, Dong-Bin;Kim, Changhee;Hwang, Jae-Kwan
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • The skin plays a key role in protecting the body from the environment and from water loss. Cornified envelope (CE) and natural moisturizing factor (NMF) are considered as the primary regulators of skin hydration and barrier function. The CE prevents loss of water from the body and is formed by cross-linking of several proteins. Among these proteins, filaggrin is an important protein because NMF is produced by the degradation of filaggrin. Proteases, including matriptase and prostasin, stimulate the generation of filaggrin from profilaggrin and caspase-14 plays a role in the degradation of filaggrin. This study elucidated the effects of an ethanol extract of Boesenbergia pandurata (Roxb.) Schltr., known as fingerroot, and its active compound panduratin A on CE formation and filaggrin processing in HaCaT, human epidermal keratinocytes. B. pandurata extract (BPE) and panduratin A significantly stimulated not only CE formation but also the expression of CE proteins, such as loricrin, involucrin, and transglutaminase, which were associated with $PPAR{\alpha}$ expression. The mRNA and protein levels of filaggrin and filaggrin-related enzymes, such as matriptase, prostasin, and caspase-14 were also up-regulated by BPE and panduratin A treatment. These results suggest that BPE and panduratin A are potential nutraceuticals which can enhance skin hydration and barrier function based on their CE formation and filaggrin processing.

Antiviral activity of sertindole, raloxifene and ibutamoren against transcription and replication-competent Ebola virus-like particles

  • Yoon, Yi-Seul;Jang, Yejin;Hoenen, Thomas;Shin, Heegwon;Lee, Younghoon;Kim, Meehyein
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.166-171
    • /
    • 2020
  • A chemical library comprising 2,354 drug-like compounds was screened using a transcription and replication-competent viruslike particle (trVLP) system implementing the whole Ebola virus (EBOV) life cycle. Dose-dependent inhibition of Ebola trVLP replication was induced by 15 hit compounds, which primarily target different types of G protein-coupled receptors (GPCRs). Based on the chemical structure, the compounds were divided into three groups, diphenylmethane derivatives, promazine derivatives and chemicals with no conserved skeletons. The third group included sertindole, raloxifene, and ibutamoren showing prominent antiviral effects in cells. They downregulated the expression of viral proteins, including the VP40 matrix protein and the envelope glycoprotein. They also reduced the amount of EBOV-derived tetracistronic minigenome RNA incorporated into progeny trVLPs in the culture supernatant. Particularly, ibutamoren, which is a known agonist of growth hormone secretagogue receptor (GHSR), showed the most promising antiviral activity with a 50% effective concentration of 0.2 μM, a 50% cytotoxic concentration of 42.4 μM, and a selectivity index of 222.8. Here, we suggest a strategy for development of anti-EBOV therapeutics by adopting GHSR agonists as hit compounds.

Characterization and Epitope Mapping of KI-41, a Murine Monoclonal Antibody Specific for the gp41 Envelope Protein of the Human Immunodeficiency Virus-1

  • Shin, Song-Yub;Park, Jung-Hyun;Jang, So-Youn;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.58-63
    • /
    • 1998
  • In this study, a mouse monoclonal antibody (mAb) against gp41(584-618), the immunodominant epitope protein, was generated. For this purpose, BALB/c mice were immunized with double branched multiple antigenic peptides derived from the HIV-1 gp41(584-618) sequence, and antibody-secreting hybridoma were produced by fusion of mice splenocytes with SP2/0 myeloma cells. One clone producing an antigen specific mAb, termed KI-41(isotype IgG1) was identified, whose specific reactivity against gp41(584-618) could be confirmed by ELISA and Western blot analysis. Epitope mapping revealed the recognition site of the mAb KI-41 to be located around the sequence RILAVERYLKDQQLLG, which comprises the N-terminal region within the immunized gp41(584-618) peptied. Since this mAb recognizes this specific epitope within the HIV-1 gp41 without any cross-reactivity to other immunodominant regions in the HIV-2 gp35, KI-41 will provide some alternative possibilities in further applications such as the development of indirect or competitive ELISA for specific antibody detection in HIV-1 infection or for other basic researches regarding the role and function of HIV-1 gp41.

  • PDF

Expression of the E. coli LacZ Gene in Chicken Embryos Using Replication Defective Retroviral Vectors Packaged With Vesicular Stomatitis Virus G Glycoprotein Envelopes

  • Kim, Teoan;Lee, Young Man;Lee, Hoon Taek;Heo, Young Tae;Yom, Heng-Cherl;Kwon, Mo Sun;Koo, Bon Chul;Whang, Key;Roh, Kwang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2001
  • Despite the high potency of the retrovirus vector system in gene transfer, one of the main drawbacks of has been difficulty in preparing highly concentrated virus stock. Numerous efforts to boost the virus titer have ended in unsatisfactory results mainly due to fragile property of retrovirus envelope protein. In this study, to overcome this problem, we constructed our own retrovirus vector system producing vector viruses encapsulated with VSV-G (vesicular stomatitis virus G glycoprotein). Concentration process of the virus stock by ultracentrifuge did not sacrifice the virus infectivity, resulting in more than 108 to 109 CFU (colony forming unit) per ml on most of the target cell lines tested. Application of this high-titer retrovirus vector system was tested on chicken embryos. Injection of virus stock beneath the blastoderms of pre-incubated fertilized eggs resulted in chick embryos expressing E. coli LacZ gene with 100% efficiency. Therefore, our results suggest that it is possible to transfer the foreign gene into chicken embryo using our high-titer retrovirus vector.