• Title/Summary/Keyword: Envelope Analysis

Search Result 446, Processing Time 0.028 seconds

Quantitative Analysis on Beat Phenomenon of a Wind Farm for Intertie/Grid Faults (연계선/그리드 사고시 풍력발전단지의 맥놀이 현상에 대한 정량적 분석)

  • Kim, Hwan-Cheol;Lee, Hye-Won;Lee, Sang-Cheol;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.91-92
    • /
    • 2011
  • Beat is a phenomenon, where the magnitudes and frequencies of the voltage and the current fluctuate. This paper describes a quantitative analysis of the beat phenomenon of a wind farm using the envelope of a current during intertie/grid fault conditions. In this paper, the ratio of the crest to the trough of the envelope curve and the time interval between adjacent troughs are defined and used to evaluate the beat phenomenon quantitatively. Beat phenomena under various fault and wind conditions are analyzed. The proposed quantitative analysis seems simple but effective in the more understanding of beat phenomenon of a wind farm, and thus can be used as a basis for operation and/or protection of an intertie.

  • PDF

Analysis of Low-frequency Reverberation Inshallow Water (천해에서의 저주파 잔향음 분석)

  • 박길선;나정열;최지웅;오선택;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.94-100
    • /
    • 2001
  • In October 1997, low-frequency reverberation was measured at an experimental site off the west coast of the Jeju island using the explosive charge, Signals Underwater Sound (SUS). Received signals were separated into the noise, the reflection, and the scattering region, and then were analyzed for the spectral and statistical characteristics of each region. In the analysis of the spectrum we verified that each region had a unique frequency band and statistical characteristics as well. The results of this analysis showed that the real and imaginary portions were shown to be both normal distributions in each frequency bin. The reverberation envelope had a Rayleigh distribution and the phase had a uniform distribution.

  • PDF

Wave Scattering Analysis of Scatterers Submerged in Water by Using a Hybrid Numerical Approach (수중 산란체의 수치적 산란해석)

  • 김재환;김세환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.84-92
    • /
    • 2000
  • In this paper, numerical scattering analysis for submerged scatterers is performed using finite and infinite elements. Unbounded domain is truncated into finite domain and finite elements are used in the domain. Infinite elements, So called Infinite Wave Envelope Elements (IWEE) which possess wave-like behavior, are used to take into account the infinite domain on the truncated boundary Scattering from rigid sphere is taken as an example and the effects of the order and mesh size of finite elements, size of finite element model and the order of IWEE are investigated. Quadratic finite element, refined mesh and higher order IWEE are recommended to improve the non-reflection boundary condition in the numerical scattering analysis.

  • PDF

Diagnosis in Beding Fatigue of Spur Gear Teeth

  • Sentoku, Hirofumi;Tokuda, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.307-311
    • /
    • 1993
  • Research concerning gears included in rotating machines has been reported using the acoustic emission (AE) method, however, almost no research has been conducted using the AE method in regard to running gears in a bending fatigue processor spur gear teeth. Therefore, in this report, a power circulating-type gear testing machine was used and AE signals and crack length were measured in the bending fatigue process of case-hardened spur gear. Furthermore, the envelope of the AE signal was detected and various analysis were carried out in this data. In the course of the experiments, the following results were observed : the AE signal envelope consists mainly of contact frequency component and twice as many as this;two peaks of AE appear in each tooth contact by the tip corner contact ; as a result of the severe tip corner contact ; as a result of the severe tip corner contact with the sudden increase of crack length, AE signal becomes large.

  • PDF

New Analysis on Reception of M-ary FSK Signals over Rician Fading Channels

  • Kim, Chang-Hwan;Han, Young-Yearl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1176-1185
    • /
    • 2000
  • In this paper, we analyze the distribution of the envelope of the received signal over frequency-nonselective slow Rician fading channels with aadditive white Gaussian noise(AWGN). Especially, we can obtain the error rate performance of noncoherent M-ary FSK(MFSK) over slow and flat Rician fading channels and AWGN from the new probability density function(PDF) of the envelope, not PDF of the instantaneous signal-to-noise ratio(SNR) published before, of the received signal. When coherent MFSK signals experience the Rician fading channel, the performances are derived, using the union bound.

  • PDF

An Analysis of Internal & External Duct Acoustic Fields by Using a Finite Element Method (유한요소법을 이용한 도관 내부 및 외부 음장해석)

  • 이재규;이덕주
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.169-178
    • /
    • 1993
  • Internal & External duct acoustic fields are calculated by using a finite element method. The geometry is assumed as an axisymmetric duct. External acoustic field; outside the duct, and combined internal & external acoustic fields are solved. For both cases a far field's nonreflecting boundary condition is enforced by using a wave envelope element, which is a kind of finite element. First, a pulsating sphere and an oscillating sphere problem are calculated to verify the external problems, and the results are compared with exact solutions. When the wave envelope element is applied at the far boundary, the calculated finite element solutions show good agreements with the exact solutions. Secondly, the combined internal & external duct acoustic fields are calculated and visualized when monopole sources are distributed inside the duct. It is observed that the directivity of sound intensity outside the duct is beaming toward the axis for high frequency sources.

  • PDF

Design Update of Transition Scheduler for Smart UAV (스마트 무인기의 천이 스케줄러 설계개선)

  • Kang, Y.S.;Yoo, C.S.;Kim, Y.S.;An, S.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.2
    • /
    • pp.14-26
    • /
    • 2005
  • A tilt-rotor aircraft has various flight modes : helicopter, airplane, and conversion. Each of flight mode has unique and nonlinear flight characteristics. Therefore the gain schedules for whole flight envelope are required for effective flight performance. This paper proposes collective, flap, and nacelle angle scheduler for whole flight envelope of the Smart UAV(Unmanned Air Vehicle) based on CAMRAD(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) II analysis results. The scheduler designs are improved so that the pitch attitude angle of helicopter mode was minimized. The range of scheduler are reduced inside of engine performance limits. The conversion corridor and rotor governor are suggested also.

  • PDF

Thermal Performance of Building Envelope with Transparent Insulation Wall (건물 외피 투과형단열 벽체의 열성능 해석 연구)

  • Jang, Yong-Sung;Yoon, Yong-Jin;Park, Hyo-Soon
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • Global efforts have made to reduce energy consumption and $CO_2$ gas emission. One of the weakest parts for energy loss through the whole building components is building envelopes. Lots of technologies to increase the thermal performance of building envelopes have been introduced in recent year. Transparent Insulation Wall(TIW) is a new technology for building insulation and has been function both solar transmittance and thermal insulation. A mathematical model of a Transparent Insulation Wall equipped with south wall was proposed in order to predict thermal performance under varying climates(summer and winter). Unsteady state heat transfer equations were set up using an energy balance equation and solved using Gauss-Seidel iteration solution procedure. The thermal performance of the TIW determined from a wall surface and air layer temperature, non-airconditioned room temperature and air conditioning load. As a result, this numerical study shows that the TIW is effective in an air conditioning load reduction. Further experimental study is required to establish complete TIW system.

A Building Heating and Cooling Load Analysis of Super Tall Building considering the Vertical Micro-climate Change (초고층 오피스 건물의 수직외부환경 변화가 건물부하에 미치는 영향)

  • Kim, Yang-su;Song, Doosam;Hwang, Suk-Ho
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In these days numerous super tall buildings are under construction or being planned in Middle East and Asian countries. Some of them are planned as an ultra high-rise building that goes over 600m tall, including Burj Khalifa, the tallest building in the world. External environment such as wind speed, temperature and humidity of the super tall building varies due to its vertical height. Therefore, it is necessary to consider these environmental changes to estimate building heating and cooling load. This paper analyzes how vertical microclimate difference affects building heating and cooling load in super tall building by simulation using radiosonde climate data. Besides, the correlation between air-tightness of building envelope and building load was analyzed for a super tall building.

Multiple Fault Detection on a Coaxial Cable via TFDR (TFDR을 이용한 동측케이블의 다중 결함 측정)

  • Ki-Seok, Kwak;Yoon, Tae-Sung;Park, Jin-Bae;Koh, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1771-1772
    • /
    • 2006
  • In this paper, we considered multiple faults detection on a coaxial cable through Time-Frequency Domain Reflectometry (TFDR). It is well known that TFDR has high resolution accuracy for detecting and estimating the fault detection on a coaxial cable. This approach was based on time-frequency signal analysis and utilized a chirp signal multiplied by a Gaussian time envelope. The Gaussian envelope provided time localization, while the chirp allowed one to excite the system interest. We carried out experiments with 10C-FBT coaxial cable having either one or two faults. The result shows TFDR can be extended to detect multiple faults with high accuracy on a coaxial cable.

  • PDF