• Title/Summary/Keyword: Entropy Filtering

Search Result 35, Processing Time 0.025 seconds

Improved Collaborative Filtering Using Entropy Weighting

  • Kwon, Hyeong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we evaluate performance of existing similarity measurement metric and propose a novel method using user's preferences information entropy to reduce MAE in memory-based collaborative recommender systems. The proposed method applies a similarity of individual inclination to traditional similarity measurement methods. We experiment on various similarity metrics under different conditions, which include an amount of data and significance weighting from n/10 to n/60, to verify the proposed method. As a result, we confirm the proposed method is robust and efficient from the viewpoint of a sparse data set, applying existing various similarity measurement methods and Significance Weighting.

  • PDF

Applying Consistency-Based Trust Definition to Collaborative Filtering

  • Kim, Hyoung-Do
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.366-375
    • /
    • 2009
  • In collaborative filtering, many neighbors are needed to improve the quality and stability of the recommendation. The quality may not be good mainly due to the high similarity between two users not guaranteeing the same preference for products considered for recommendation. This paper proposes a consistency definition, rather than similarity, based on information entropy between two users to improve the recommendation. This kind of consistency between two users is then employed as a trust metric in collaborative filtering methods that select neighbors based on the metric. Empirical studies show that such collaborative filtering reduces the number of neighbors required to make the recommendation quality stable. Recommendation quality is also significantly improved.

Entropy-based Similarity Measures for Memory-based Collaborative Filtering

  • Kwon, Hyeong-Joon;Latchman, Haniph
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.5 no.2
    • /
    • pp.5-10
    • /
    • 2013
  • We proposed a novel similarity measure using weighted difference entropy (WDE) to improve the performance of the CF system. The proposed similarity metric evaluates the entropy with a preference score difference between the common rated items of two users, and normalizes it based on the Gaussian, tanh and sigmoid function. We showed significant improvement of experimental results and environments. These experiments involved changing the number of nearest neighborhoods, and we presented experimental results for two data sets with different characteristics, and results for the quality of recommendation.

Forest Fire Damage Assessment Using UAV Images: A Case Study on Goseong-Sokcho Forest Fire in 2019

  • Yeom, Junho;Han, Youkyung;Kim, Taeheon;Kim, Yongmin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.351-357
    • /
    • 2019
  • UAV (Unmanned Aerial Vehicle) images can be exploited for rapid forest fire damage assessment by virtue of UAV systems' advantages. In 2019, catastrophic forest fire occurred in Goseong and Sokcho, Korea and burned 1,757 hectares of forests. We visited the town in Goseong where suffered the most severe damage and conducted UAV flights for forest fire damage assessment. In this study, economic and rapid damage assessment method for forest fire has been proposed using UAV systems equipped with only a RGB sensor. First, forest masking was performed using automatic elevation thresholding to extract forest area. Then ExG (Excess Green) vegetation index which can be calculated without near-infrared band was adopted to extract damaged forests. In addition, entropy filtering was applied to ExG for better differentiation between damaged and non-damaged forest. We could confirm that the proposed forest masking can screen out non-forest land covers such as bare soil, agriculture lands, and artificial objects. In addition, entropy filtering enhanced the ExG homogeneity difference between damaged and non-damaged forests. The automatically detected damaged forests of the proposed method showed high accuracy of 87%.

Using Kalman Filtering and Segmentation Techniques to Capture and Detect Cracks in Pavement

  • Hsu, C.J.;Chen, C.F.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.930-932
    • /
    • 2003
  • For this study we used a CCD video camera to capture the pavement image information via the computer. During investigation processing, the CCD video camera captured 10${\sim}$30 images per second. If the vehicle velocity is too fast, the collected images will be duplicated and if the velocity is too slow there will be a gapped between images. Therefore, in order to control the efficiency of the image grabber we should add accessory tools such as the Differential Global Positioning System (DGPS) and odometer. Furthermore, Kalman Filtering can also solve these problems. After the CCD video camera captured the pavement images, we used the Least-Squares method to eliminate images of gradation which have non-uniform surfaces due to the illumination at night. The Fuzzy Entropy method calculates images of threshold segments and creates binary images. Finally, the Object Labeling algorithm finds objects that are cracks or noises from the binary image based on volume pixels of the object. We used these algorithms and tested them, also providing some discussion and suggestions.

  • PDF

Dual Exposure Fusion with Entropy-based Residual Filtering

  • Heo, Yong Seok;Lee, Soochahn;Jung, Ho Yub
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2555-2575
    • /
    • 2017
  • This paper presents a dual exposure fusion method for image enhancement. Images taken with a short exposure time usually contain a sharp structure, but they are dark and are prone to be contaminated by noise. In contrast, long-exposure images are bright and noise-free, but usually suffer from blurring artifacts. Thus, we fuse the dual exposures to generate an enhanced image that is well-exposed, noise-free, and blur-free. To this end, we present a new scale-space patch-match method to find correspondences between the short and long exposures so that proper color components can be combined within a proposed dual non-local (DNL) means framework. We also present a residual filtering method that eliminates the structure component in the estimated noise image in order to obtain a sharper and further enhanced image. To this end, the entropy is utilized to determine the proper size of the filtering window. Experimental results show that our method generates ghost-free, noise-free, and blur-free enhanced images from the short and long exposure pairs for various dynamic scenes.

Accuracy Assessment of Ground Information Extracting Method from LiDAR Data (LiDAR자료의 지면정보 추출기법의 정확도 평가)

  • Choi, Yun-Woong;Choi, Nei-In;Lee, Joon-Whoan;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.19-26
    • /
    • 2006
  • This study assessed the accuracies of the ground information extracting methods from the LiDAR data. Especially, it compared two kinds of method, one of them is using directly the raw LiDAR data which is point type vector data and the other is using changed data to DSM type as the normal grid type. The methods using Local Maxima and Entropy methods are applied as a former case, and for the other case, this study applies the method using edge detection with filtering and the generated reference surface by the mean filtering. Then, the accuracy assessment are performed with these results, DEM constructed manually and the error permitted limit in scale of digital map. As a results, each DEM mean errors of methods using edge detection with filtering, reference surface, Local Maxima and Entropy are 0.27m, 2.43m, 0.13m and 0.10m respectively. Hence, the method using entropy presented the highest accuracy. And an accuracy from a method directly using the raw LiDAR data has higher accuracy than the method using changed data to DSM type relatively.

  • PDF

Cluster Feature Selection using Entropy Weighting and SVD (엔트로피 가중치 및 SVD를 이용한 군집 특징 선택)

  • Lee, Young-Seok;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.248-257
    • /
    • 2002
  • Clustering is a method for grouping objects with similar properties into a same cluster. SVD(Singular Value Decomposition) is known as an efficient preprocessing method for clustering because of dimension reduction and noise elimination for a high dimensional and sparse data set like E-Commerce data set. However, it is hard to evaluate the worth of original attributes because of information loss of a converted data set by SVD. This research proposes a cluster feature selection method, called ENTROPY-SVD, to find important attributes for each cluster based on entropy weighting and SVD. Using SVD, one can take advantage of the latent structures in the association of attributes with similar objects and, using entropy weighting one can find highly dense attributes for each cluster. This paper also proposes a model-based collaborative filtering recommendation system with ENTROPY-SVD, called CFS-CF and evaluates its efficiency and utilization.

Image Deblocking Scheme for JPEG Compressed Images Using an Adaptive-Weighted Bilateral Filter

  • Wang, Liping;Wang, Chengyou;Huang, Wei;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.631-643
    • /
    • 2016
  • Due to the block-based discrete cosine transform (BDCT), JPEG compressed images usually exhibit blocking artifacts. When the bit rates are very low, blocking artifacts will seriously affect the image's visual quality. A bilateral filter has the features for edge-preserving when it smooths images, so we propose an adaptive-weighted bilateral filter based on the features. In this paper, an image-deblocking scheme using this kind of adaptive-weighted bilateral filter is proposed to remove and reduce blocking artifacts. Two parameters of the proposed adaptive-weighted bilateral filter are adaptive-weighted so that it can avoid over-blurring unsmooth regions while eliminating blocking artifacts in smooth regions. This is achieved in two aspects: by using local entropy to control the level of filtering of each single pixel point within the image, and by using an improved blind image quality assessment (BIQA) to control the strength of filtering different images whose blocking artifacts are different. It is proved by our experimental results that our proposed image-deblocking scheme provides good performance on eliminating blocking artifacts and can avoid the over-blurring of unsmooth regions.

Strategies for Selecting Initial Item Lists in Collaborative Filtering Recommender Systems

  • Lee, Hong-Joo;Kim, Jong-Woo;Park, Sung-Joo
    • Management Science and Financial Engineering
    • /
    • v.11 no.3
    • /
    • pp.137-153
    • /
    • 2005
  • Collaborative filtering-based recommendation systems make personalized recommendations based on users' ratings on products. Recommender systems must collect sufficient rating information from users to provide relevant recommendations because less user rating information results in poorer performance of recommender systems. To learn about new users, recommendation systems must first present users with an initial item list. In this study, we designed and analyzed seven selection strategies including the popularity, favorite, clustering, genre, and entropy methods. We investigated how these strategies performed using MovieLens, a public dataset. While the favorite and popularity methods tended to produce the highest average score and greatest average number of ratings, respectively, a hybrid of both favorite and popularity methods or a hybrid of demographic, favorite, and popularity methods also performed within acceptable ranges for both rating scores and numbers of ratings.