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Abstract

UAV (Unmanned Aerial Vehicle) images can be exploited for rapid forest fire damage assessment by virtue of 
UAV systems’ advantages. In 2019, catastrophic forest fire occurred in Goseong and Sokcho, Korea and burned 
1,757 hectares of forests. We visited the town in Goseong where suffered the most severe damage and conducted 
UAV flights for forest fire damage assessment. In this study, economic and rapid damage assessment method for 
forest fire has been proposed using UAV systems equipped with only a RGB sensor. First, forest masking was 
performed using automatic elevation thresholding to extract forest area. Then ExG (Excess Green) vegetation 
index which can be calculated without near-infrared band was adopted to extract damaged forests. In addition, 
entropy filtering was applied to ExG for better differentiation between damaged and non-damaged forest. 
We could confirm that the proposed forest masking can screen out non-forest land covers such as bare soil, 
agriculture lands, and artificial objects. In addition, entropy filtering enhanced the ExG homogeneity difference 
between damaged and non-damaged forests. The automatically detected damaged forests of the proposed 
method showed high accuracy of 87%.
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1. Introduction

Benefits of UAV (Unmanned Aerial Vehicle) systems 
enable rapid and high-resolution forest fire damage 
assessment. UAV images can be acquired immediately 
after forest fire unlike traditional remote sensing data such 
as satellite images and airborne photos. Revisit time of 
satellite monitoring systems degrades prompt post-disaster 
data acquisition. In case of airborne systems, they requires 
more flight resources and strict compliance with complex 
regulations than UAV surveying. On the contrary to this, 
UAV systems require less human resources and cost and 
can be exploited in time. Since timely data acquisition is 
the most important factor for disaster damage assessment, 
UAV systems are getting higher attention from the society 

and academic fields. The potential of UAV applications in 
various disaster types has been investigated in recent years. 
Bhardwaj et al. (2016) examined applications of UAV and 
their prospects in glaciology. They remarked that UAVs’ 
stereo-viewing capabilities can help detect changes in glacier 
surface elevations. Yang et al. (2018) proposed a classification 
method to identify aquaculture facilities damaged by 
a typhoon using UAVs. Zhang et al. (2018) proposed a 
framework that utilizes a UAV-based hyperspectral image 
to identify insect-induced forest damages at tree level. Xu et 
al. (2018) presented a classification method for earthquake 
damage mapping from UAV photogrammetric point clouds. 
It can be confirmed from the previous studies that UAV 
remote sensing enables fine-scale analysis for each specific 
disaster monitoring theme.
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On April 4th, 2019, catastrophic forest fire occurred in 
Goseong, Korea and spread to Sokcho which is about 25 
km away due to strong wind. Damaged forest area totaled 
1,757 hectares and hundreds of properties including houses, 
agriculture facilities, and vehicles disappeared. There were 
many attempts to monitor forest fire damage using remote 
sensing data. Chu and Guo (2014) reviewed related articles 
and summarized them based on sensor type and spatial 
resolution (Kasischke et al., 2011; Loboda et al., 2012; Potapov 
et al., 2008; Ruiz et al., 2012). Most of the previous research 
used satellite sensors and their spatial resolutions range from 
2.5 m to 8 km, which is quite coarser than UAV images. 
Airborne LiDAR (Light Detection and Ranging) and SAR 
(Synthetic Aperture Radar) data were also used for obtaining 
forest structural information and might address some issues 
of passive optical systems, however, it is not sufficient for 
forest monitoring in terms of vegetation greenness. UAV-
based fine-scale forest fire monitoring should be investigated 
so that forest fire damage assessment can be diversified 
according to the level of detail and research purpose. Yuan 
et al. (2015) investigated UAV-based forest fire monitoring 
studies over the last decade, however, the problem is that 
most of the studies focused on the confirmation of forest 
fire occurrence and localization (Bradley and Taylor, 2011; 
Martínez-de Dios et al., 2011; Merino et al., 2012). They 
focused on disaster response, not on surveying-level damage 
assessment. Therefore, in this study, UAV-based forest fire 
damage assessment was investigated at fine-scale considering 
vegetation index and its homogeneity.

We visited the town in Goseong where suffered the most 
severe damage and conducted UAV flights for data collection. 
The purpose of this study is developing an economic and 
rapid damage assessment method for forest fire which can 
be applied to UAV systems equipped with only a RGB 
sensor. In this study, ExG (Excess Green) vegetation index 
which showed good performance in vegetation monitoring 
in previous research (Torres-Sánchez et al., 2014; Bendig et 
al., 2015) was adopted to extract damaged forests. Yeom et 
al. (2019) also confirmed that the use of ExG is promising 
compared to other RGB (Red Green Blue) vegetation indices.

2. Methods

The overall study flow is shown in Fig. 1. UAV orthophoto 
and DEM (Digital Elevation Model) were generated from 
UAV raw images. For the processing, ground coordinates of 
GCPs (Ground Control Points) were added as constraints for 
accurate geo-rectification. Then, forest areas were extracted 
based on the DEM to mask out non-forest land covers such 
as bare soil, agricultural lands, paved roads, and artificial 
objects. The elevation criterion for the forest area filtering 
was automatically calculated by Otsu algorithm. Then, ExG 
vegetation index on the filtered forest area was calculated. 
For extraction of damaged forest, entropy filtering was 
additionally applied to the ExG result and thresholding value 
between damaged and non-damaged forests was derived 
using Otsu algorithm.

Fig. 1. Flowchart of the study

2.1. UAV data processing and forest masking

Two months after the Goseong-Sokcho forest fire, UAV 
flight was conducted using DJI Inspire 2 and Zenmuse X4S 
RGB sensor. UAV raw images were collected at 60 m altitude 
with a 70% overlap. Before the flight, eight ground targets 
were distributed and their coordinates were measured by 
ground GPS (Global Positioning System) surveying. From 
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the acquired UAV raw images, orthophoto and DEM were 
generated using Agisoft Photoscan software.

From the generated DEM, threshold value that separates 
forest and others was automatically calculated using Eq. (1). 
It was assumed that high elevation regions in a small study 
site correspond with forests since the elevation change due 
to mountain area is considerably higher than plain elevation 
change. As in Eq. (1), total variance ( ) can be divided into 
in-class variance (

 ) and inter-class variance (
 ). Otsu 

algorithm determines threshold value () that maximizes 
inter-class variance thereby minimizing in-class variance. 
The in-class variance is defined by the weighted sum of 
each class variance as in Eq. (2). In this study, class 1 and 2 
represent forest and others, respectively. The threshold value 
minimizes in-class variance was determined automatically. 
In addition, a histogram of DEM was checked since Otsu 
algorithm assumes bi-modal distribution of input data.

  
  



                                                                     (1)


    

    
                                  (2)

where   and   are weight coefficients for class 1 and 2, 


 and 
 are variances of class 1 and 2. 

2.2. ExG calculation and entropy filtering

Near-infrared vegetation indices are mainly used for 
forest research. However, RGB vegetation indices showed 
promising results in the previous study compared with near-
infrared vegetation indices (Yeom et al., 2019) and forest 
fire damage assessment using RGB images is required for 
versatile application and rapid countermeasures. Therefore, 
ExG RGB vegetation index was adopted in this study and the 
formula is shown in Eqs. (3) and (4).

ExG                                                   (3)

                                                                                             (4)

The generated ExG image was clipped based on the result 
of forest masking. In addition, entropy filtering was applied 
to the ExG image in order to consider forest homogeneity. 
Entropy ( ) is the measure of uncertainty or mixedness 

defined by Eq. (5). In this study, it was assumed that non-
damaged forest has higher entropy than damaged forest 
because leaves, shadows, and branches are mixed up before 
forest fire, which results in high entropy. Conversely, exposed 
bare ground or ground covered by ashes has relatively 
homogeneous textures, which results in low entropy.

                                                (5)

where  and  are an event element and its probability, 
respectively. The entropy filtering was performed using a 11 
by 11 moving window, therefore, noisy clutters resulted from 
cm-level UAV images were suppressed while calculating 
averaged local entropy.

2.3. �Damaged forest detection and accuracy 

assessment

Otsu algorithm was applied to the ExG entropy filtering 
result for the detection of damaged forests. Low ExG entropy 
regions were regarded as damaged forest and the threshold 
value that separate damaged and non-damaged forests was 
automatically determined by Eqs. (1) and (2). In addition, the 
result was compared with the damaged forest detected from 
the ExG without entropy filtering for verification of entropy 
filtering. Histograms of ExG entropy and original ExG were 
compared with each other to check probability density.

Since UAVs allow super high-resolution imaging and the 
images contain every single detail, patch-based accuracy 
assessment was performed. First, accurate forest areas 
were manually digitized and 100 patches in the digitized 
data were randomly extracted. The size of each patch is 1 
m by 1 m. After random patch extraction, each patch was 
labeled as damaged forest or non-damaged forest by image 
interpretation. These reference data were compared with 
forest fire damage assessment results from the proposed 
method which uses ExG and entropy filtering together. In our 
forest fire damage assessment, when the ratio of damaged 
forest pixels on the patch is higher than 50%, the patch is 
then determined as a damaged forest.
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3. Results and Discussion

3.1 Experimental Data

We visit Toseong town in Goseong, Korea on May 27. DJI 
Inspire 2 platform and Zenmuse X4S RGB sensor were used 
for UAV data collection. A total of 404 raw images were 
collected and the coverage area was 0.113 km2. A part of the 
covered area was selected as a study site which is 42,000 m2 
(Fig. 2(a)). The generated orthophoto and DEM have spatial 
resolutions of 1.49 cm and 5.97 cm, respectively (Fig. 2). It 
can be observed from Fig. 2(a) that there was severe forest 
fire damage on the forest.

 

(a) (b)

Fig. 2. UAV data of the study site (a) Orthophoto, (b) DEM

3.2 Results

Histogram of DEM elevation in the study site is shown 
in Fig. 3(a). It describes the probability density of DEM 
elevation and follows bi-modal distribution which is the 
assumption of Otsu algorithm. The automatically derived 
threshold value was 37.7463 m, which corresponds to 
the valley between two peaks: (1) more frequent and 
lower elevation on the plain, (2) less frequent and higher 
elevation on the mountain area. The extracted forest area 
is shown in Fig. 3(b). Although the entire forest area 
was well extracted, some high buildings and trees were 
extracted as forest area since parts of trees and buildings 
have a higher elevation than the threshold value of 37.7463 
m as shown in Fig. 4(a) and 4(b). In addition, the DEM 
derived from UAV images has an inevitable problem with 
conjugate point matching on some trees since trees move 
by wind, which resulted in the omission of DEM data. 
For these regions, it is not able to extract forest area since 
DEM data are not available (Fig. 4(c)).

(a)

(b)

Fig. 3. Forest masking (a) Histogram of DEM elevation,
(b) Extracted forest area

(a) (b) (c)

Fig. 4. Errors in forest masking (a), (b) commission error, 
(c) omission error

ExG vegetation index calculation and its entropy filtering 
results are shown in Fig. 5. Other land covers except for 
forests were masked out using the previous forest masking 
results. ExG values are generally between –1 and 1 like other 
vegetation indices as shown in Fig. 5(b). Although damaged 
forest areas are visually obvious in Fig. 2(a), ExG difference 
between damaged and non-damaged forests is not clear 
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and most of the values are concentrated around the value 
of 0 (Fig. 5(a) and (b)). On the contrary to this, the entropy 
filtering result showed better contrast than the original ExG 
(Fig. 5(c)). Moreover, the value of ExG entropy is distributed 
along the entire range between 0 and 7 forming bi-modal 
distribution (Fig. 5(d)): (1) dominant lower ExG entropy from 
the damaged forests, (2) a minority of non-damaged forests 
that have higher ExG entropy.

(a)

(c)

(b)

(d)

Fig. 5. ExG calculation and entropy filtering (a) ExG in the 
forest areas, (b) Distribution of ExG, (c) Entropy filtering 
results in the forest areas, (d) Distribution of ExG entropy

The threshold values for ExG and ExG entropy were 
automatically determined and the values were 0.1059 and 
2.9172, respectively. Based on the threshold values, low 
ExG and low ExG entropy areas were detected as damaged 
forests, respectively (Fig. 6). The main difference between 
the results was that ExG-based damage detection is more 
sensitive to single-pixel details than the result of ExG 
entropy filtering. This can be confirmed from the enlarged 
visual comparison in Fig. 7(d)–(f). The detected damaged 
forest from ExG was sensitive to pixel-level noises on the 
ground, branches, and withered leaves. Conversely, the 
result from the proposed ExG entropy filtering was able 
to detect damaged forests considering homogeneity of 
neighboring regions (Fig. 7).

(a) (b)

Fig. 6. Damaged forest detection (a) ExG, (b) ExG entropy

Fig. 7. Enlarged images for visual comparison (white: 
damaged forest, black: non-damaged forest) (a), (d) 
orthophoto, (b), (e) damaged forest from ExG, (c), (f) 

damaged forest from ExG entropy filtering

Hundred patches in the reference forest area were 
randomly extracted and then interpreted to label them as 
damaged forest or non-damaged forest. The labeled patches 
were compared with automatic forest damage decisions 
derived from the damaged forest ratio. The accuracy 
assessment result is shown in Table 1. The proposed method, 
ExG entropy filtering, showed 87% overall accuracy of forest 
fire damage detection. The proposed method rarely extracted 
wrong damaged forest. However, the proposed method 
sometimes overestimates non-damaged forests. It is because 
entropy filtering is sensitive to the presence of vegetation and 
shadow pixels. A few green leaves and shadows can increase 
the entropy values of a moving window, which resulted in 
the overestimation of non-damaged forests as in the right 

(a)

(d)

(b)

(e)

(c)

(f)
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figure of Fig. 8(c). In addition, failure of the forest area 
filtering affected the omission of damaged forest detection 
as in the left figure of Fig. 8(c). Fig. 8 shows the examples 
of correct damaged forest detection, correct non-damaged 
forest detection, and overestimation of non-damaged forests. 

Table 1. Accuracy of the proposed forest fire damage 
assessment

Type
Reference data

Damaged 
forest

Non-
damaged 

forest
The proposed 

method
(ExG with 

entropy 
filtering)

Damaged 
forest 53 -

Non-
damaged 

forest
13 34

Accuracy
assessment patch

Damage detection 
result

Accuracy 
assessment patch

Damage detection 
result

(a)

(b)

(c)

Fig. 8. Examples of accuracy assessment patches and forest 
fire damage detection from the proposed method (white: 
damaged forest, black: non-damaged forest) (a) correct 

damaged forest detection, (b) correct non-damaged forest 
detection, (c) overestimation of non-damaged forests

4. Conclusion

In this study, a UAV-based fine-scale forest fire damage 
assessment was investigated. First, forest areas were 
automatically extracted based on the elevation threshold 

value. Then ExG RGB vegetation index was calculated so that 
the proposed forest fire damage assessment can be applied to 
standard RGB sensor without near-infrared information. In 
addition, entropy filtering was applied to the ExG result for 
better identification of damaged forests.

The advantages of the proposed method are as follows. 
First, the proposed method can be an effective solution for 
rapid forest fire damage assessment using consumer-grade 
UAV RGB sensors. Second, the proposed method confirmed 
that the use of only a vegetation index is not enough for 
accurate forest fire damage assessment due to ambiguity in 
determination of a threshold value between damaged and 
non-damaged forests. The application of entropy filtering 
improved forest damage detection accuracy by considering 
vegetation index textures. The proposed forest masking 
method may not work well on different study sites where 
have steep plain. Therefore, as future works, elevation and 
slope combined factors will be investigated for versatile 
application. Additionally, 3D analysis approach will be 
developed for volumetric forest fire damage assessment.
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