• 제목/요약/키워드: Enthalpy and entropy

검색결과 251건 처리시간 0.022초

Lanthanides-Benzoylformate 착물 형성에 관한 열역학적 연구 (Thermodynamic Properties of Lanthanides Complexes with Benzoylformate Anion)

  • 김영인;박선금
    • 대한화학회지
    • /
    • 제37권4호
    • /
    • pp.442-447
    • /
    • 1993
  • 수용액 내에서 란탄(Ⅲ)-benzoylformate 착물 형성 반응의 열역학적 파라메타들(${\Delta}$G, ${\Delta}$H 및 ${\Delta}$S)을 pH 및 엔탈피 적정 방법을 사용하여 이온세기 $0.1M NaClO_4$, 25$^{\circ}C$ 조건하에서 구하였다. 란탄-benzoylformate 착물의 안정도 상수(1:1) 값으로부터 benzoylformate가 두자리 리간드로 작용함을 알 수 있었다. 열역학적 실험 결과는 카르복실기와 함께 케톤기 산소원자가 결합에 참여하여 킬레이트를형성하는 것으로 판단되었으며, 이는 benzoylformate 리간드 내에 존재하는 벤젠고리의 공액 효과에 의해 케톤기의 산소원자의 전하량이 증가된 결과로 해석되었다. 착물의 안정도는 엔트로피 효과 뿐 아니라, 금속-산소결합 형성에 따른 엔탈피 효과에도 기인하였다.

  • PDF

Synthesis, Characterization and DNA Interaction Studies of (N,N'-Bis(5-phenylazosalicylaldehyde)-ethylenediamine) Cobalt(II) Complex

  • Sohrabi, Nasrin;Rasouli, Nahid;Kamkar, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2523-2528
    • /
    • 2014
  • In the present study, at first, azo Schiff base ligand of (N,N'-bis(5-phenylazosalicylaldehyde)-ethylenediamine) ($H_2L$) has been synthesized by condensation reaction of 5-phenylazosalicylaldehyde and ethylenediamine in 2:1 molar ratio, respectively. Then, its cobalt complex (CoL) was synthesized by reaction of $Co(OAc)_2{\cdot}4H_2O$ with ligand ($H_2L$) in 1:1 molar ratio in ethanol solvent. This ligand and its cobalt complex containing azo functional groups were characterized using elemental analysis, $^1H$-NMR, UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and CoL complex was investigated in 10 mM Tris/HCl buffer solution, pH = 7 using UV-vis absorption, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of CoL complex with ct-DNA was found to be $(2.4{\pm}0.2){\times}10^4M^{-1}$. The thermodynamic parameters were calculated by van't Hoff equation.The enthalpy and entropy changes were $5753.94{\pm}172.66kcal/mol$ and $43.93{\pm}1.18cal/mol{\cdot}K$ at $25^{\circ}C$, respectively. Thermal denaturation experiments represent the increasing of melting temperature of ct-DNA (about $0.93^{\circ}C$) due to binding of CoL complex. The results indicate that the process is entropy-driven and suggest that hydrophobic interactions are the main driving force for the complex formation.

여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 전기화학적 특성 (Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and Bromine Substituent and their Transition Metal Complexes)

  • 김선덕;신윤열;박성우
    • 분석과학
    • /
    • 제11권6호
    • /
    • pp.440-447
    • /
    • 1998
  • 브롬 치환기를 가지는 여러자리 시프염기인 5-Br-BSDT(bis(5-bromosalicylaldehyde)diethy- lenetriamine), 5-Br-BSTT(bis(5-bromosalicylaldehyde)triethylenetetramine)와 5-Br-BSTP(bis(5-bromosalicylaldehyde)tetraethylenepentamine)를 합성하여 DMSO 용매에서 이들 리간드들과 구리(II), 니켈(II) 및 아연(II) 등의 전이금속과의 안정도 상수값을 폴라로그래피를 이용하여 구하였다. 이때 금속과 리간드는 1 : 1착물을 형성하였고, 안정도 상수값은 금속으로서는 Cu(II)>Ni(II)>Zn(II) 순서로, 리간드로서는 5-Br-BSTP>5-Br-BSTT>5-Br-BSDT 순서로 나타남으로서 주개 원자수의 증가에 의존한다는 사실을 알았다. 엔탈피와 엔트로피는 모두 음의 값을 나타내었는데 흡열반응으로서 금속이온과 리간드가 매우 강하게 결합하고 있음을 알 수 있고 극성을 가지는 금속착물이 생성되어 용매인 DMSO와 아주 강한 상호작용을 함으로써 큰 음의 엔트로피 값을 가진 것으로 생각된다.

  • PDF

액정 p-Azoxyanisole의 열역학적 성질에 대한 이론적인 예측 (Theoretical Prediction of the Thermodynamic Properties of Liquid-Crystalline p-Azoxyanisole)

  • 도영규;전무식;이태규
    • 대한화학회지
    • /
    • 제20권2호
    • /
    • pp.118-128
    • /
    • 1976
  • 액체에 대한 significant structure theory 와 상의 전이에 대한 Bragg-Williams근사를 사용하여 액정 화합물인 p-azoxyanisole의 열역학적 성질을 nematic phase와 isotropic phase의 온도범위에 걸쳐 계산하였다. Isotropic phase는 일반적인 액체로 보았으며 nematic phase는 액체적인 성질외에도 분자쌍극자의 배열에 의한 영향도 고려하였다. p-Azoxyanisole의 액체적인 성질은 significant structure theory로 기술하였으며 분자쌍극과 배열에 의한 영향은 Bragg-Williams 근사로써 고려하였다. 부피, 증기압, 정압비열, 열팽창계수, nematic-isotropic 전이점에서의 엔트로피 엔탈피 변화, 절대엔트로피, Helmholtz free energy등을 계산하여 실험치와 비교하였다.

  • PDF

Equilibrium Binding of Wild-type and Mutant Drosophila Heat Shock Factor DNA Binding Domain with HSE DNA Studied by Analytical Ultracentrifugation

  • Park, Jin-Ku;Kim, Soon-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1839-1844
    • /
    • 2012
  • We have investigated binding between wild-type and mutant Heat Shock Factor (HSF) DNA binding domains (DBDs) with 17-bp HSE containing a central 5'-NGAAN-3' element by equilibrium analytical ultracentrifugation using multi-wavelength technique. Our results indicate that R102 plays critical role in HSE recognition and the interactions are characterized by substantial negative changes of enthalpy (${\Delta}H^0_{\theta}=-9.90{\pm}1.13kcal\;mol^{-1}$) and entropy (${\Delta}S^0_{\theta}=-12.46{\pm}3.77cal\;mol^{-1}K^{-1}$) with free energy change, ${\Delta}G^0_{\theta}$ of $-6.15{\pm}0.03kcal\;mol^{-1}$. N105 plays minor role in the HSE interactions with ${\Delta}H^0_{\theta}$ of $-2.54{\pm}1.65kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}$ of $19.28{\pm}5.50cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}$ of $-8.35{\pm}0.05kcal\;mol^{-1}$, which are similar to those observed for wild-type DBD:HSE interactions (${\Delta}H^0_{\theta}=-3.31{\pm}1.86kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}=17.38{\pm}6.20cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}=-8.55{\pm}0.06kcal\;mol^{-1}$) indicating higher entropy contribution for both wild-type and N105A DBD bindings to the HSE.

Temperature Dependence of Activation and Inhibition of Mushroom Tyrosinase by Ethyl Xanthate

  • Alijanianzadeh, M.;Saboury, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권5호
    • /
    • pp.758-762
    • /
    • 2007
  • A new alkyldithiocarbonate (xanthate), as sodium salts, C2H5OCS2Na, was synthesized by the reaction between CS2 with ethyl alcohol in the presence of NaOH. The new xanthate was characterized by 1H NMR, IR and elemental analysis. Then, the new synthesized compound was examined for functional study of cresolase activity of Mushroom Tyrosinase (MT) from a commercial source of Agricus bisporus in 10 mM phosphate buffer pH 6.8, at three temperatures of 10, 20 and 33℃ using UV spectrophotemetry. 4-[(4-methylphenyl)- azo]-phenol (MePAPh) was used as a synthetic substrate for the enzyme for cresolase reaction. The results show that ethyl xanthate can activate or inhibit the cresolase activity of mushroom tyrosinase depending to the concentration of ethyl xanthate. It was concluded that the enzyme has two distinct sites for ethyl xanthate. The first one is a high-affinity activation site and the other is a low-affinity inhibition site. Activation of the enzyme in the low concentration of ethyl xanthate arises from increasing the affinity of binding for the substrate as well as increasing the enzyme catalytic constant. The affinity of ligand binding in the activation site is decreased by increasing of the temperature, which is the opposite result for the inhibition site. Hence, the nature of the interaction of ethyl xanthate is different in two distinct sites. The binding process for cresolase inhibition is only entropy driven, meanwhile the binding process for cresolase activation is not only entropy driven but also enthalpy driven means that hydrophobic interaction is more important in the inhibition site.

폐용제 분별증류 회수 반응의 평형 및 속도론적 기초연구 (Fundamental Studies on the Equilibrium and Kinetics for the fractional Distillation Reaction of Waste Organic Solvent)

  • 노현숙;김동수
    • 자원리싸이클링
    • /
    • 제11권6호
    • /
    • pp.38-46
    • /
    • 2002
  • 분별증류법을 이용하여 폐유기용제를 회수하는 과정의 평형 및 반응 속도론적인 면에 대한 기초연구를 수행하였다. 산업용 유기용제로 가장 많이 사용되고 있는 toluene과 xylene으로 인공폐용제을 제조하였다. 증류된 용제의 순도를 GC를 이용하여 검증해 본 결과 회수율은 94~98% 범위로 매우 양호하였다. 평형론적 해석을 통해 증류반응에 대한 Gibbs 자유 에너지의 변화와 표준 엔탈피 및 표준 엔트로피의 변화를 산정하였으며 toluene과 xylene의 표준 엔탈피 변화값이 각각 44.833과 47.044kJ $mol^{-1}$ 로 이들 물질의 몰증발열과 유사한 값을 나타내었다. 한편 반응 속도론적으로 해석해 본 결과 증류반응에 대한 활성화에너지는 toluene이 3.281kJ $mol^{-1}$ 로 xylene의 2.699kJ $mol^{-1}$ 보다 다소 높았으며 이는 표준 엔탈피 변화값과 비교해 볼 때 평형시에 비해 증류중 에너지 소비가 십분의 일 수준임을 파악할 수 있었다. 분별증류로 회수한 용제의 순도 역시 우수하여 회수한 폐용제가 원용제를 부분적으로 대체할 수 있는 가능성이 있음을 확인할 수 있었다.

Dimesogenic Compounds with Chiral Tails: Synthesis and Liquid Crystalline Properties of a Homologous Series of a, w-Bis[4-(4'-(S)-( -)-2-methylbutoxycarbonylbiphenyl- 4-oxycarbonyl)phenoxy]alkanes

  • 최이준;최봉구;김재훈;진정일
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권1호
    • /
    • pp.110-117
    • /
    • 2000
  • A series of new liquid crystalline dimesogenic compounds with chiral tails was synthesized, and their thermal and liquid crystalline properties were studied. The chain length of the central polymethylene spacers (x) was varied from dimethylene (2) to decamethylene (12). These compounds were characterized by elemental analysis, IR and NMR spectroscopy, differential scanning calorimetry (DSC), and cross-polarizing microscopy. All compounds were found to be enantiotropically liquid crystalline, and the values of melting ($T_m$) and isotropization temperature ($T_i$) as well as enthalpy change (Δ$H_i$) and entropy change for isotropization (Δ$S_i$) decreased in a zig-zag fashion revealing the so-called odd-even effect as x increases. Their mesomorphic properties fall into three categories depending upon x; (a) compounds with x=2 and 4 formed two different mesophases, smectic and cholesteric phases in that order on heating, and vice versa on cooling, (b) compounds with x=3, 7, 8, 10 and 11 reversibly formed only the cholesteric phase, and (c) compounds with x=5, 6, 9 and 12 exhibited only a cholesteric phase on heating, whereas on cooling they formed two different mesophases, cholesteric and smectic phases, sequentially.

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • 제17권3호
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions

  • Park, Kyoung-Ho;Lee, Yelin;Lee, Yong-Woo;Kyong, Jin Burm;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3657-3664
    • /
    • 2012
  • Reactions of 1-adamantylmethyl chloroformate ($1-AdCH_2OCOCl$, 1) and 1-adamantylmethyl fluoroformate ($1-AdCH_2OCOF$, 2) in hydroxylic solvents have been studied. Application of the extended Grunwald-Winstein (G-W) equation to solvolyses of 1 in a variety of pure and binary solvents indicates an addition-elimination pathway in the majority of the solvents except an ionization pathway in the solvents of relatively low nucleophilcity and high ionizing power. The solvolyses of 2 show an addition-elimination pathway in all of the mixed solvents. The leaving group effects ($k_F/k_{Cl}$), the kinetic solvent isotope effects (KSIEs, $k_{MeOH}/k_{MeOD}$), and the enthalpy and entropy of activation for the solvolyses of 1 and 2 were also calculated. The selectivity values (S) for each solvent composition are reported and discussed. These observations are compared with those previously reported for other alkyl haloformate esters.