Fundamental Studies on the Equilibrium and Kinetics for the fractional Distillation Reaction of Waste Organic Solvent

폐용제 분별증류 회수 반응의 평형 및 속도론적 기초연구

  • 노현숙 (이화여자대학교 공과대학 환경학과) ;
  • 김동수 (이화여자대학교 공과대학 환경학과)
  • Published : 2002.12.01

Abstract

Fundamental investigations were conducted far the recovery process of waste organic solvent by fractional distillation in the aspects of equilibrium and kinetics. Mixture of toluene and xylene, which were both being used in the largest amount as industrial organic solvent, was taken as the artificial waste organic solvent and their distillation behaviors were studied. The purity of recovered solvent was investigated by Cir Chromatography and shown to be in the range of 94~98%. Based upon equilibrium calculations, the changes in the Gibbs free energy, standard enthalpy, and standard entropy for distillation reaction have been estimated. The standard enthalpy changes for toluene and xylene were shown to be 44.833 and 47.044 kJ $mol^{-1}$ respectively, which were similar to their molar heats of evaporation. The activation energies of distillation fur toluene and xylene obtained from kinetic studies were 3.281 and 2.699 kJ $mol^{-1}$ and they were about one tenths of the standard enthalpy changes of distillation reaction. The highness of the purity of recovered organic solvents suggested the possibility that the recovered waste organic sol-vent could partly replace the original solvent.

분별증류법을 이용하여 폐유기용제를 회수하는 과정의 평형 및 반응 속도론적인 면에 대한 기초연구를 수행하였다. 산업용 유기용제로 가장 많이 사용되고 있는 toluene과 xylene으로 인공폐용제을 제조하였다. 증류된 용제의 순도를 GC를 이용하여 검증해 본 결과 회수율은 94~98% 범위로 매우 양호하였다. 평형론적 해석을 통해 증류반응에 대한 Gibbs 자유 에너지의 변화와 표준 엔탈피 및 표준 엔트로피의 변화를 산정하였으며 toluene과 xylene의 표준 엔탈피 변화값이 각각 44.833과 47.044kJ $mol^{-1}$ 로 이들 물질의 몰증발열과 유사한 값을 나타내었다. 한편 반응 속도론적으로 해석해 본 결과 증류반응에 대한 활성화에너지는 toluene이 3.281kJ $mol^{-1}$ 로 xylene의 2.699kJ $mol^{-1}$ 보다 다소 높았으며 이는 표준 엔탈피 변화값과 비교해 볼 때 평형시에 비해 증류중 에너지 소비가 십분의 일 수준임을 파악할 수 있었다. 분별증류로 회수한 용제의 순도 역시 우수하여 회수한 폐용제가 원용제를 부분적으로 대체할 수 있는 가능성이 있음을 확인할 수 있었다.

Keywords

References

  1. 구재현, 이재건: '용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석', 자원리싸이클링, 9(4), 28-36 (2000)
  2. A. Lunghi, M. Cattaneo and P. Cardillo: 'Explosion during Distillation in a Solvent Recovery Plant', Journal of Loss Prevention in the Process Industries, 11, 249-252 (1998) https://doi.org/10.1016/S0950-4230(98)00002-3
  3. M. F. Mohamed, D. Kang and V. P. Aneja: 'Volatile Organic Compounds in Some Urban Locations in United States', Chemosphere, 47(8), 863-882 (2002) https://doi.org/10.1016/S0045-6535(02)00107-8
  4. I. K.. Yoon and C. H. Park: 'Effects of Gas Flow Rate, Inlet Concentration and Temperature on Biofiltration of Volatile Organic Compounds in a Peat-Packed Biofilter', Journal of Bioscience and Bioengineering, 93(2), 165-169 (2002) https://doi.org/10.1263/jbb.93.165
  5. 유해화학물질 배출량조사(TRI)결과 (1999)
  6. Y. G. Lee and M. F. Malone: 'Batch Process Planning for Waste Minimization', Ind. Eng. Chem. Res., 39, 2035-2044 (2000) https://doi.org/10.1021/ie990184u
  7. B. A. Perlmutter: 'New Techniques for Solvent Recovery and Elimination of Wastewater Emissions during Vacuum Process Operations', Environmental Progress, 16(2), 132-136 (1997) https://doi.org/10.1002/ep.3300160220
  8. X. Hu: 'Recovery of Chloroform from Effluent with Solvent Extraction-Distillation Process', Separation Science and Technology, 32(12), 2039-2050 (1997) https://doi.org/10.1080/01496399708000753
  9. N. Qureshi, M. M. Meagher, J. Huang and R. W. Hutkins: 'Acetone Butanol Ethanol (ABE) Recovery by Pervaporation Using Silicalite-Silicone Composite Membrane from Fed-Batch Reactor of Clostridium Acetobutylicum', Journal of Membrane Science, 187(1), 93-102 (2001) https://doi.org/10.1016/S0376-7388(00)00667-0
  10. L. S. White and A. R. Nitsch: 'Solvent Recovery from Lube Oil Filtrates with a Polyimide Membrane', Journal of Membmne Science, 179(1), 267-274 (2000) https://doi.org/10.1016/S0376-7388(00)00517-2
  11. P. Pollien and A. Chaintreau: 'Simultaneous DiStillation Extraction: Theoretical Model and Development of a Preparative Unit', Anal. Chem., 69, 3285-3292 (1997) https://doi.org/10.1021/ac9701905
  12. M. A. Reis: 'Waste Lubrication Oil Rerefining by Extraction-Flocculation. 3. A Pilot Plant Study', Ind. Eng. Chem. Res., 30, 2449-2456 (1991) https://doi.org/10.1021/ie00059a014
  13. A. Arce, J. C. Perez and A. Soto: 'Vapor-Liquid Equilibrium Data for the Recovery of 1-octanol from Ternary Mixtures with Methanol and Water', Fluid Phase Equilibria, 129, 187-195 (1997) https://doi.org/10.1016/S0378-3812(96)03170-6
  14. D. R. Birchler, M. W. Mike, A. L. Marks and R. G. Luthy: 'Landfill Leachate Treatment by Evaporation', Journal of Environmental Engineering, 13(5), 1109-1131 (1994)
  15. A. L. Marks, R. G. Luthy and U. M. Diwekar: 'Semi-Continuous Evaporation Model from Leachate Treatment Process Evaluation', Environmental Progress, 13(4), 278-289 (1994) https://doi.org/10.1002/ep.670130419
  16. E. Krell : 'Handbook of Laboratory Disillation', Verdagder Wissenschaften, Berlin (1982)
  17. I. M. Klotz and R. M. Rosenberg: 'Chemical Thermodynamics', 5th Ed., 153-162, John Wiley and Sons, New York (1994)
  18. 'Handbook of Chemistry and Physics', 60th Ed., D-83, CRC press, USA (1979)
  19. J. G. Henry and G. W. Heinke: 'Environmental Science and Engineering', 2nd Ed., 193-194, Prentice-Hall International, New Jersey, USA (1996)