• Title/Summary/Keyword: Enthalpy and entropy

Search Result 251, Processing Time 0.021 seconds

Thermodynamic Properties of Lanthanides Complexes with Benzoylformate Anion (Lanthanides-Benzoylformate 착물 형성에 관한 열역학적 연구)

  • Young-Inn Kim;Sun-Geum Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.442-447
    • /
    • 1993
  • The thermodynamic parameters (${\Delta}$G, ${\Delta}$H and ${\Delta}$S) of lanthanides(III)-benzoylformate complexes in aqueous solution have been determined in the ionic medium of 0.1M $NaClO_4$ at 25$^{\circ}C$, using pH and enthalpy titration method. The stability constants of the lanthanide(III)-benzoylformate complexes (1 : 1) agree well with the general relationships for the bidentate ligands (e.g., log${\beta}_1$ vs. p$K_a$). Thermodynamic evidences show that the oxygen atom in ketone group is coordinated along with the carboxylate group. It is ascribed to the increasing charge density on the oxygen atom in ketone group due to the conjugation effect in the benzoylformate ligand. Thermodynamic results also indicate that the complexes are stabilized by the enthalpy effect caused by the ionic interaction of metal-oxygen bond as well as the entropy effect.

  • PDF

Synthesis, Characterization and DNA Interaction Studies of (N,N'-Bis(5-phenylazosalicylaldehyde)-ethylenediamine) Cobalt(II) Complex

  • Sohrabi, Nasrin;Rasouli, Nahid;Kamkar, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2523-2528
    • /
    • 2014
  • In the present study, at first, azo Schiff base ligand of (N,N'-bis(5-phenylazosalicylaldehyde)-ethylenediamine) ($H_2L$) has been synthesized by condensation reaction of 5-phenylazosalicylaldehyde and ethylenediamine in 2:1 molar ratio, respectively. Then, its cobalt complex (CoL) was synthesized by reaction of $Co(OAc)_2{\cdot}4H_2O$ with ligand ($H_2L$) in 1:1 molar ratio in ethanol solvent. This ligand and its cobalt complex containing azo functional groups were characterized using elemental analysis, $^1H$-NMR, UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and CoL complex was investigated in 10 mM Tris/HCl buffer solution, pH = 7 using UV-vis absorption, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of CoL complex with ct-DNA was found to be $(2.4{\pm}0.2){\times}10^4M^{-1}$. The thermodynamic parameters were calculated by van't Hoff equation.The enthalpy and entropy changes were $5753.94{\pm}172.66kcal/mol$ and $43.93{\pm}1.18cal/mol{\cdot}K$ at $25^{\circ}C$, respectively. Thermal denaturation experiments represent the increasing of melting temperature of ct-DNA (about $0.93^{\circ}C$) due to binding of CoL complex. The results indicate that the process is entropy-driven and suggest that hydrophobic interactions are the main driving force for the complex formation.

Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and Bromine Substituent and their Transition Metal Complexes (여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 전기화학적 특성)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.440-447
    • /
    • 1998
  • Polydentate Schiff base ligands 5-Br-BSDT(bis(5-bromosalicylaldehyde)diethylenetriamine) having $N_3O_2$ atoms, 5-Br-BSTT(bis(5-bromosalicylaldehyde)triethylenetetramine) having $N_3O_2$ atoms, 5-Br-BSTP(bis(5-bromosalicylaldehyde)tetraethylenepentamine) having $N_3O_2$ atoms were synthesized. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in DMSO by a polarographic method. It was observed that all metal(II) ions employed in this study formed 1 : 1 complexes with Schiff base ligands. Stability constants for the ligands were in the order of Cu(II)>Ni(II)>Zn(II), and for complex formation were in the order of 5-Br-BSTP>5-Br-BSTT>5-Br-BSDT according to the increasing in the number of donor atoms. Both enthalpy and entropy changes are obtained in negative valves. Exothermicity for the complex formation indicated tight binding between the ligands and metal ions. The negative entropy change would be related to the fact that solvent molecules are strongly interacting with the metal complexes.

  • PDF

Theoretical Prediction of the Thermodynamic Properties of Liquid-Crystalline p-Azoxyanisole (액정 p-Azoxyanisole의 열역학적 성질에 대한 이론적인 예측)

  • Youngkyu Do;Mu Shik Jhon;Taikyue Ree
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.2
    • /
    • pp.118-128
    • /
    • 1976
  • The significant structure theory of liquids and the Bragg-Williams approximation of phase transition theory have been applied to the calculation of the thermodynamic properties of p-azoxyanisole which exhibits a liquid crystal phase of the nematic type. The isotropic phase was treated as a normal liquid; and for the nematic phase, in addition to its liquidity, the effect due to the arrangement of molecular-dipoles was considered. The liquidity of the p-azoxyanisole was described by the significant structure theory of liquids, and the Bragg-Williams approximation was used to consider the effect due to the arrangement of molecular-dipoles. The molar volume, vapor pressure, heat capacity at constant pressure, thermal expansion coefficient, compressibility, entropy and enthalpy change at the nematic-isotropic phase transition point, absolute entropy, and absolute Helmholtz free energy were calculated over the temperature range of the nematic and isotropic phases. The calculated results of the thermodynamic properties were compared with the experimental data.

  • PDF

Equilibrium Binding of Wild-type and Mutant Drosophila Heat Shock Factor DNA Binding Domain with HSE DNA Studied by Analytical Ultracentrifugation

  • Park, Jin-Ku;Kim, Soon-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1839-1844
    • /
    • 2012
  • We have investigated binding between wild-type and mutant Heat Shock Factor (HSF) DNA binding domains (DBDs) with 17-bp HSE containing a central 5'-NGAAN-3' element by equilibrium analytical ultracentrifugation using multi-wavelength technique. Our results indicate that R102 plays critical role in HSE recognition and the interactions are characterized by substantial negative changes of enthalpy (${\Delta}H^0_{\theta}=-9.90{\pm}1.13kcal\;mol^{-1}$) and entropy (${\Delta}S^0_{\theta}=-12.46{\pm}3.77cal\;mol^{-1}K^{-1}$) with free energy change, ${\Delta}G^0_{\theta}$ of $-6.15{\pm}0.03kcal\;mol^{-1}$. N105 plays minor role in the HSE interactions with ${\Delta}H^0_{\theta}$ of $-2.54{\pm}1.65kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}$ of $19.28{\pm}5.50cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}$ of $-8.35{\pm}0.05kcal\;mol^{-1}$, which are similar to those observed for wild-type DBD:HSE interactions (${\Delta}H^0_{\theta}=-3.31{\pm}1.86kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}=17.38{\pm}6.20cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}=-8.55{\pm}0.06kcal\;mol^{-1}$) indicating higher entropy contribution for both wild-type and N105A DBD bindings to the HSE.

Temperature Dependence of Activation and Inhibition of Mushroom Tyrosinase by Ethyl Xanthate

  • Alijanianzadeh, M.;Saboury, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.758-762
    • /
    • 2007
  • A new alkyldithiocarbonate (xanthate), as sodium salts, C2H5OCS2Na, was synthesized by the reaction between CS2 with ethyl alcohol in the presence of NaOH. The new xanthate was characterized by 1H NMR, IR and elemental analysis. Then, the new synthesized compound was examined for functional study of cresolase activity of Mushroom Tyrosinase (MT) from a commercial source of Agricus bisporus in 10 mM phosphate buffer pH 6.8, at three temperatures of 10, 20 and 33℃ using UV spectrophotemetry. 4-[(4-methylphenyl)- azo]-phenol (MePAPh) was used as a synthetic substrate for the enzyme for cresolase reaction. The results show that ethyl xanthate can activate or inhibit the cresolase activity of mushroom tyrosinase depending to the concentration of ethyl xanthate. It was concluded that the enzyme has two distinct sites for ethyl xanthate. The first one is a high-affinity activation site and the other is a low-affinity inhibition site. Activation of the enzyme in the low concentration of ethyl xanthate arises from increasing the affinity of binding for the substrate as well as increasing the enzyme catalytic constant. The affinity of ligand binding in the activation site is decreased by increasing of the temperature, which is the opposite result for the inhibition site. Hence, the nature of the interaction of ethyl xanthate is different in two distinct sites. The binding process for cresolase inhibition is only entropy driven, meanwhile the binding process for cresolase activation is not only entropy driven but also enthalpy driven means that hydrophobic interaction is more important in the inhibition site.

Fundamental Studies on the Equilibrium and Kinetics for the fractional Distillation Reaction of Waste Organic Solvent (폐용제 분별증류 회수 반응의 평형 및 속도론적 기초연구)

  • Noh Hyun-Sook;Kim Dong-Su
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.38-46
    • /
    • 2002
  • Fundamental investigations were conducted far the recovery process of waste organic solvent by fractional distillation in the aspects of equilibrium and kinetics. Mixture of toluene and xylene, which were both being used in the largest amount as industrial organic solvent, was taken as the artificial waste organic solvent and their distillation behaviors were studied. The purity of recovered solvent was investigated by Cir Chromatography and shown to be in the range of 94~98%. Based upon equilibrium calculations, the changes in the Gibbs free energy, standard enthalpy, and standard entropy for distillation reaction have been estimated. The standard enthalpy changes for toluene and xylene were shown to be 44.833 and 47.044 kJ $mol^{-1}$ respectively, which were similar to their molar heats of evaporation. The activation energies of distillation fur toluene and xylene obtained from kinetic studies were 3.281 and 2.699 kJ $mol^{-1}$ and they were about one tenths of the standard enthalpy changes of distillation reaction. The highness of the purity of recovered organic solvents suggested the possibility that the recovered waste organic sol-vent could partly replace the original solvent.

Dimesogenic Compounds with Chiral Tails: Synthesis and Liquid Crystalline Properties of a Homologous Series of a, w-Bis[4-(4'-(S)-( -)-2-methylbutoxycarbonylbiphenyl- 4-oxycarbonyl)phenoxy]alkanes

  • Choe, Lee Jun;Choe, Bong Gu;Kim, Jae Hun;Jin, Jeong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.110-117
    • /
    • 2000
  • A series of new liquid crystalline dimesogenic compounds with chiral tails was synthesized, and their thermal and liquid crystalline properties were studied. The chain length of the central polymethylene spacers (x) was varied from dimethylene (2) to decamethylene (12). These compounds were characterized by elemental analysis, IR and NMR spectroscopy, differential scanning calorimetry (DSC), and cross-polarizing microscopy. All compounds were found to be enantiotropically liquid crystalline, and the values of melting ($T_m$) and isotropization temperature ($T_i$) as well as enthalpy change (Δ$H_i$) and entropy change for isotropization (Δ$S_i$) decreased in a zig-zag fashion revealing the so-called odd-even effect as x increases. Their mesomorphic properties fall into three categories depending upon x; (a) compounds with x=2 and 4 formed two different mesophases, smectic and cholesteric phases in that order on heating, and vice versa on cooling, (b) compounds with x=3, 7, 8, 10 and 11 reversibly formed only the cholesteric phase, and (c) compounds with x=5, 6, 9 and 12 exhibited only a cholesteric phase on heating, whereas on cooling they formed two different mesophases, cholesteric and smectic phases, sequentially.

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions

  • Park, Kyoung-Ho;Lee, Yelin;Lee, Yong-Woo;Kyong, Jin Burm;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3657-3664
    • /
    • 2012
  • Reactions of 1-adamantylmethyl chloroformate ($1-AdCH_2OCOCl$, 1) and 1-adamantylmethyl fluoroformate ($1-AdCH_2OCOF$, 2) in hydroxylic solvents have been studied. Application of the extended Grunwald-Winstein (G-W) equation to solvolyses of 1 in a variety of pure and binary solvents indicates an addition-elimination pathway in the majority of the solvents except an ionization pathway in the solvents of relatively low nucleophilcity and high ionizing power. The solvolyses of 2 show an addition-elimination pathway in all of the mixed solvents. The leaving group effects ($k_F/k_{Cl}$), the kinetic solvent isotope effects (KSIEs, $k_{MeOH}/k_{MeOD}$), and the enthalpy and entropy of activation for the solvolyses of 1 and 2 were also calculated. The selectivity values (S) for each solvent composition are reported and discussed. These observations are compared with those previously reported for other alkyl haloformate esters.