• Title/Summary/Keyword: Enterotoxigenic Escherichia coli (ETEC)

Search Result 37, Processing Time 0.027 seconds

Effect of frozen storage and various concentrations of sucrose media on survivability of enterotoxigenic Escherichia coli (ETEC) for oral challenge of weaner pigs

  • Cho, Hyun Min;Kang, Joo Won;Kim, Yeong Kuk;Lee, Joo Bin;Oh, Chan Yi;Heo, Jung Min;Yi, Young-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.5
    • /
    • pp.788-793
    • /
    • 2016
  • Post-weaning diarrhea (PWD), mostly caused by enterotoxigenic Escherichia coli (ETEC), remains to be a major source of economic loss in swine industry. The use of the ETEC-oral challenge model is often applied to mimic unsanitary commercial swine farm conditions where pathogens and unknown complex microbes exist and can cause severe infections in pigs. The purpose of this study was (1) to estimate ETEC density using spectrophotometric computation, (2) to determine survivability of ETEC after storing at $-20^{\circ}C$ for 7 days, and (3) to evaluate survivability of ETEC after blending with diluted sweeteners (0, 5, 10, 20, and 40% sucrose in phosphate buffered saline [PBS]). Cell density was quantified using UV-VIS spectrophotometer and counting ETEC colony forming units (cfu) at 0, 30, 60, 90, 120, 150, 180, 210, and 240 min. The established linear equation ($y=0.0031x^2-0.0079x+0.0043$ and $y=0.0046x^2-0.0151x+0.0113$) was used for robust quantification of each ETEC cell density. ETEC stored at $-20^{\circ}C$ showed 108 cfu/mL after thawing and incubation. When ETEC was blended with sweeteners (20 and 40%), survival of ETEC was decreased by 58 and 54% in 5 min post blending. However, addition of 20% of sweetener resulted in a higher survivability than those with other media concentrations. Therefore, the use of ETEC-oral challenge model would be possible as a stable method if we could confirm the appropriate medium that increases survivability of ETEC in weaner pigs.

Establishment of a linear regression equation for quantification of beta-hemolytic Escherichia coli in different media and survival of hemolytic Escherichia coli after blending with three different media

  • Kim, Jae Cheol;Pluske, John R.;Yoo, Jaehong;Heo, Jung Min
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.135-139
    • /
    • 2014
  • Pathogenic E. coli associated post-weaning diarrhea (PWD) and edema disease are common diseases in commercially-housed weanling pigs. An enterotoxigenic E. coli (ETEC) oral challenge model has been used to mimic the physiological responses observed in commercial conditions. However, an oral challenge procedure has two major limitations: (1) the ETEC cell density is unknown at the point of oral inoculation, and (2) blending ETEC with traditional TSB (trypticase soy broth) is not palatable and hence decreases acceptability by piglets. Therefore, the purposes of this study were to (1) establish a regression equation that can be used for estimation of ETEC concentration in dilution media using the spectrophotometric measurement of cell density; and (2) examine survival of ETEC after blending either with TSB, sweetener or dextrose. A strain of ETEC (serogroup beta-hemolytic E. coli O149; K91; F4; toxins LT, STa, STb) was grown in TSB for 3.5 hours, centrifuged, the supernatant was discarded, and the ETEC pellet was then blended either with TSB (100 mL), sweetener (60 mL TSB + 40 mL fruit flavored concentrate), or dextrose (50 mL TSB + 50 mL dextrose; 0.5g/mL dextrose). Cell density was measured using the colorimetric method and also plated on a 5% sheep blood agar for counting of ETEC colony forming units at 0, 5, 35, 65 and 125 min after blending. The optical density at 600 nm explained 83% of ETEC colony forming units, indicating that the established linear equation (y= 6E+08x - 4E+07, P<0.004) can be used for robust quantification of ETEC cell density in TSB, sweetener and dextrose media. When ETEC was blended with sweetener and dextrose, survival of ETEC was decreased by 45% and 72% within 5 min post-blending. Therefore, further research is required to find out the suitable medium that has potential to improve palatability without compromising survival of ETEC.

Effect of Enterotoxigenic Escherichia coli on Microbial Communities during Kimchi Fermentation

  • Lee, Woojung;Choi, Hyo Ju;Zin, Hyunwoo;Kim, Eiseul;Yang, Seung-Min;Hwang, Jinhee;Kwak, Hyo-Sun;Kim, Soon Han;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1552-1558
    • /
    • 2021
  • The diverse microbial communities in kimchi are dependent on fermentation period and temperature. Here, we investigated the effect of enterotoxigenic Escherichia coli (ETEC) during the fermentation of kimchi at two temperatures using high-throughput sequencing. There were no differences in pH between the control group, samples not inoculated with ETEC, and the ETEC group, samples inoculated with ETEC MFDS 1009477. The pH of the two groups, which were fermented at 10 and 25℃, decreased rapidly at the beginning of fermentation and then reached pH 3.96 and pH 3.62. In both groups, the genera Lactobacillus, Leuconostoc, and Weissella were predominant. Our result suggests that microbial communities during kimchi fermentation may be affected by the fermentation parameters, such as temperature and period, and not enterotoxigenic E. coli (ETEC).

Comparison of Sensitivity for Detection of Heat-Labile Enterotoxin of Enterotoxienic Escherichia coli(EC 81) and Enterotoxin of Enterotoxigenic Clostridium perforngens type A (NCPC8238) by Means of a Polymerase Chain Reaction Assay (독소원성 대장균(EC81)이 생산하는 이열성장독소와 Clostridium perfringens A형 (NCTC8238)이 생산하는 장독소의 검색을 위한 중합효소 연쇄반응기법의 감도 비교)

  • 정희곤
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Detection for heat-labile enterotoxin(LT) of enterotoxigenic Escherichia coli(ETEC, EC81, O148:H28) and enterotoxin of enterotoxigentic Clostridium perfringents type A(CP, NCTC8238, Hobbs serotype 2) by use of a polymerase chain reaction (PCR) assay were positive reaction, which using LT gene-specific primers of ETEC with a detection limit equivalent from 100ng/${\mu}\ell$ to 1 pg of a DNA fragment of 417-bp in EC81 and enterotoxin gene-specific primers of CP with a detection limit equivalent from 100ng/${\mu}\ell$ to 10pg of a DNA fragment of 364-bp in NCTC8238. Detection for a LT gene of ETEC highly appeared 10-fold sensitivity than an enterotoxin gene of CP.

  • PDF

Enterotoxigenic Escherichia coli in Korean Children with and without Diarrhea (소아 설사증에서 분리한 대장균 장독소의 병원적 역할)

  • Ahn, Byung-Soo;Kim, Kyung-Hee;Han, Wang-Soo;Suh, Inn-Soo
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.2
    • /
    • pp.131-137
    • /
    • 1987
  • The incidnce of enterotoxigenic Esherichia coli(ETEC) was investigated in E. coli strains isolated from Korean infants less than two years old. Over a period of 12 months, ETEC strains have been isolated from 45(45.0%) of 100 children with acute diarrhea and from 9(20.5%) of 44 children without diarrhea. In the group with diarrhea, 41(41.0%) strains produced heat-stable toxin, 3(3.1%) produced heat-labile toxin, and 1(1.0%) produced both heat-stable and heat-labile toxins. In the control group, 7(15.9%) released heat-stable toxin, 2(4.5%) released heat-labile toxin and none released both. A statistical association of strains releasing heat-stable toxin was significant(P<0.025).

  • PDF

The protective efficacy of the enterotoxigenic Escherichia coli vaccine candidate by GI24 against neonatal piglet colibacillosis

  • Choi, Yeong Hwan;Moon, Ja Young;Seo, Byoung Joo;Kim, Won Kyung;Cho, Jeong Sang;Choi, Min Su;Lim, Jae Sam;Kim, Sung Bok;Kim, Won Il;Hur, Jin
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.4
    • /
    • pp.235-244
    • /
    • 2017
  • Enterotoxigenic Escherichia coli (ETEC) strains producing each F4, F5, F6 and F41 fimbriae were lysed by GI24 peptide. The lysate cells were used as ETEC vaccine candidate. This study was carried out to examine whether intramuscular (im) immunization of pregnant sows with the novel vaccine candidate could effectively protect their neonatal piglets against ETEC colibacillosis. All pregnant sows were primed at 11 weeks and were boosted at 14 weeks of pregnancy. Group A sows were im inoculated with PBS. Group B sows were im immunized with $2{\times}10^9$ the mixture. Seral IgG, colostral IgA and IgG titers from group B sows, and seral IgG and IgA levels in group B piglets were significantly higher than those of group A sows and piglets, respectively. After challenge with wild-type ETEC, diarrhea and mortality was not observed in group B piglets. However, diarrhea was observed in 66.7% of group A piglets, and 33.3% mortality was observed. These findings indicate that im immunization of sows with the mixture of the novel vaccine candidate can effectively protect their offspring from ETEC colibacillosis.

Protective efficacy of a novel multivalent vaccine in the prevention of diarrhea induced by enterotoxigenic Escherichia coli in a murine model

  • Zhao, Hong;Xu, Yongping;Li, Gen;Liu, Xin;Li, Xiaoyu;Wang, Lili
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.7.1-7.14
    • /
    • 2022
  • Background: Enterotoxigenic Escherichia coli (ETEC) infection is a primary cause of livestock diarrhea. Therefore, effective vaccines are needed to reduce the incidence of ETEC infection. Objectives: Our study aimed to develop a multivalent ETEC vaccine targeting major virulence factors of ETEC, including enterotoxins and fimbriae. Methods: SLS (STa-LTB-STb) recombinant enterotoxin and fimbriae proteins (F4, F5, F6, F18, and F41) were prepared to develop a multivalent vaccine. A total of 65 mice were immunized subcutaneously by vaccines and phosphate-buffered saline (PBS). The levels of specific immunoglobulin G (IgG) and pro-inflammatory cytokines were determined at 0, 7, 14 and 21 days post-vaccination (dpv). A challenge test with a lethal dose of ETEC was performed, and the survival rate of the mice in each group was recorded. Feces and intestine washes were collected to measure the concentrations of secretory immunoglobulin A (sIgA). Results: Anti-SLS and anti-fimbriae-specific IgG in serums of antigen-vaccinated mice were significantly higher than those of the control group. Immunization with the SLS enterotoxin and multivalent vaccine increased interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) concentrations. Compared to diarrheal symptoms and 100% death of mice in the control group, mice inoculated with the multivalent vaccine showed an 80% survival rate without any symptom of diarrhea, while SLS and fimbriae vaccinated groups showed 60 and 70% survival rates, respectively. Conclusions: Both SLS and fimbriae proteins can serve as vaccine antigens, and the combination of these two antigens can elicit stronger immune responses. The results suggest that the multivalent vaccine can be successfully used for preventing ETEC in important livestock.

Genetic Analysis and Characterization of a Bacteriophage ØCJ19 Active against Enterotoxigenic Escherichia coli

  • Kim, Gyeong-Hwuii;Kim, Jae-Won;Kim, Jaegon;Chae, Jong Pyo;Lee, Jin-Sun;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.746-757
    • /
    • 2020
  • Enterotoxigenic Escherichia coli (ETEC) is the major pathogenic E. coli that causes diarrhea and edema in post-weaning piglets. In this study, we describe the morphology and characteristics of ØCJ19, a bacteriophage that infects ETEC, and performed genetic analysis. Phage ØCJ19 belongs to the family Myoviridae. One-step growth curve showed a latent phase of 5 min and burst size of approximately 20 phage particles/infected cell. Phage infectivity was stable for 2 h between 4℃ and 55℃, and the phage was stable between pH 3 and 11. Genetic analysis revealed that phage ØCJ19 has a total of 49,567 bases and 79 open reading frames (ORFs). The full genomic sequence of phage ØCJ19 showed the most similarity to an Escherichia phage, vB_EcoS_ESCO41. There were no genes encoding lysogeny, toxins, virulence factors, or antibiotic resistance in this phage, suggesting that this phage can be used safely as a biological agent to control ETEC. Comparative genomic analysis in terms of the tail fiber proteins could provide genetic insight into host recognition and the relationship with other coliphages. These results showed the possibility to improve food safety by applying phage ØCJ19 to foods of animal origin contaminated with ETEC and suggests that it could be the basis for establishing a safety management system in the animal husbandry.

Construction of a live attenuated Salmonella strain expressing FanC protein to prevent bovine enterotoxigenic Escherichia coli and evaluation of its immunogenicity in mice

  • Won, Gayeon;Kim, Hee Jung;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • To construct a novel vaccine candidate against bovine enterotoxigenic Escherichia coli (ETEC), FanC, the major subunit of K99 fimbriae adhesion, was inserted into secretion plasmid pYA3560 containing a ${\beta}-lactamase$ secretion system. This was then transformed into ${\Delta}asd$ ${\Delta}crp$ Salmonella (S.) Typhimurium and designated as JOL950. Secretion of recombinant fanC fimbrial antigens was confirmed by immunoblot analysis. Groups of mice were inoculated with single or double doses of JOL950. Another group was used as a negative control. Compared to control mice, all immunized mice had significantly higher levels (p < 0.05) of serum immunoglobulin (Ig)G, and secretory IgA against FanC. The IgG2a and IgG1 titer assays revealed that immunization highly induced IgG2a compared to that of IgG1, indicating that T helper-1- related cell-mediated immune responses may be elicited by JOL950. The results show that both systemic and mucosal immunities against selected fimbrial antigens of bovine ETEC expressed by a live attenuated S. Typhimurium strain are prominently produced in mice immunized with JOL950 via an oral route.

Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli K88 infection of weaned piglets (이유자돈의 실험적 enterotoxigenic Escherichia coli K88 감염에 의한 설사증에 대한 박테리오파지의 예방과 치료에 대한 효능 평가)

  • Kim, Sung-Jae;Kim, Jin-Dong;Yang, Si-Yong;Kim, Nam-Hee;Lee, Chang-Hee;Yang, Don-Sik;Han, Jeong-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.341-352
    • /
    • 2011
  • Colibacillosis in pigs remain a major swine industry bruden worldwide. Although some progress has been made in treating collibacillosis in pigs by using biosecurity and antimicrobials, it still remain a considerable problem. The use of host-specific bateriophages as a biocontrol is one possible alternative. The purpose of this study was to evaluate the effect of bacteriophage against enterotoxigenic Escherichia coli (ETEC) K88 infection in piglets. Twenty-eight piglets were randomly divided into four groups and each group was allocated with 7 pigs. Group B, C and D were inoculated with 5 ml of ETEC K88 ($1{\times}10^8$ CFU/ml) per head of piglet via oral. Group C and D were fed with bacteriophages (Group C, $1.0{\times}10^6$ PFU/g; Group D, $1.0{\times}10^8$ PFU/g; CJ CheilJedang Corp., Korea) orally as treatment. In piglets administrated bacteriophages and challenged with ETEC K88 (Group C and D), Clinical signs and the growth performance were improved and antibody titers were maintained low level compared with piglets challenged with ETEC K88 (Group B, P<0.05). Group B were shown high pH in the alimentary tracts compared with other piglets (P<0.05). In quantitative analysis by real-time PCR, the results of Group C and D were lower than those Group B in faecal and intestinal samples (P<0.05). Severe villus atrophy and crypt hyperplasia were observed in Group B consequently V/C ratio increased, compared with other piglets. These results indicate that feeding with bacteriophage has effect to prevent ETEC K88 infection in piglets and suggest that use of bacteriophage can be considered a valid antibiotic alternative.